Age specific features of nNOS immunoreactive neurons in rat neocortex

Author:

Rumyantseva T. A.1,Agadzhanova L. S.1,Varentsov V. E.1ORCID,Pozhilov D. A.1ORCID,Dashyan T. S.1,Kiselev A. V.1

Affiliation:

1. Yaroslavl State Medical University

Abstract

The aim of the study was to evaluate the morphological features of nNOS-positive (nNOS-IR) neurons in the dorsolateral cortex of the frontal lobe of the cerebral hemispheres in albino rats during 180 days of postnatal development.Material and methods. The study was performed on 40 outbred white Wistar rats of different ages, from 1 to 180 days. The object of the study was an area of the right cerebral hemisphere on the dorsolateral surface near the frontal pole (neocortex). On paraffin serial sections of the frontal lobe, an immunohistochemical reaction was performed with antibodies to nNOS and a detection system with horseradish peroxidase. Neuronal morphometry was performed by microphotographs using the ImageJ-Fiji (NIH) 1.51h program, measuring the sectional area of the  neuron   body,  the  area  of the  nucleus,  the  nuclear-cytoplasmic  ratio,  and  the  intensity  of the  reaction.The significance of differences was assessed by paired Student's t-test.Results. It was found that in mature rats in the frontal lobe cortex nNOS-IR was detected in large multi-polar cells with high activity of the enzyme located in the supragranular layers, spindle-shaped cells with long positive processes at the border with the white matter (type 1), and two varieties of low-positive neurons – accumulations in the VI layer and single ones in other layers (type 2). Polymorphism of nNOS-IR neurons manifests from the birth, but it was possible to distinguish all subpopulations only from the 21st day. Each subpopulation is distinguished by its own age dynamics of the studied parameters and the nature of the distribution of positivity. In addition, in 3–7 day old rat pups, numerous small neurons at the border of the cortex and white matter have transient immunoreactivity.Conclusion. Thus, the division of nNOS-IR neurons into two morphological types proposed in the works of predecessors does not correspond to the number of subpopulations that could be described in the dorsolateral region of the prefrontal cortex in rats. This diversity of nNOS-IR neurons is consistent with the numerous functions described for nitric oxide. For an objective characterization of various classes of nNOS-IR cortical interneurons, it is necessary to use additional data obtained from transcriptomic, histological, electrophysiological, and functional experiments, taking into account species, topographic, and age features. Only an extended approach will make it possible to selectively influence different types of cells and reasonably interpret the results of experimental studies.

Publisher

VSMU N.N. Burdenko

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3