The effect of myo–inositol supplementation on feed physicochemical structure and viral load of dry cat food contaminated with SARS–CoV–2 by simulating sneezing

Author:

Korkmaz Serol1ORCID,Parmaksız Ayşe2ORCID,Omurtag–Korkmaz Burcu Irem3ORCID,Sait Ahmet2ORCID

Affiliation:

1. Pendik Veterinary Control Institute, Virology Laboratory. Istanbul, Turkey - Marmara University, Institute of Health Sciences, Biosafety and Biosecurity Program. Istanbul, Turkey

2. Pendik Veterinary Control Institute, Virology Laboratory. Istanbul, Turkey

3. Marmara University, Faculty of Health Sciences, Department of Nutrition and Dietetics. Istanbul, Turkey

Abstract

The study was carried to investigate the effect of myo–inositol supplementation on feed physicochemical structure and viral load of dry cat food contaminated with inactive SARS–CoV–2 by simulating sneezing. The most natural infection of severe acute respiratory syndrome coronavirus 2 (SARS–CoV–2) in animals is related to close contact with their owners with COVID–19 which is handling, taking care and feeding them. SARS–CoV–2 can survive on food, fomites and surfaces for extended periods related to environmental conditions. Many natural feed additives and supplements have been a candidate in recent antiviral treatment strategies against COVID–19. In this study, myo–inositol which is permitted in animal nutrition was used at different concentrations (0, 12.5, 25 and 50 mg·100 g-1 cat food) and conditions (22°C at room temperature and 4°C in the refrigerator) to investigate its effects on feed physicochemical structure and viral load of dry cat food contaminated with inactive SARS–CoV–2 by simulating sneezing. For the interactions between myo–inositol, feed structure and viral load, dry matter, moisture, water absorption index (WAI), water solubility index (WSI), pH and virus gene copy (GC) by RT–qPCR were measured. As only storage temperature affected both WAI and WSI as expected, myo–inostol supplementation dose–dependently decreased gene copy in dry cat food (IC50:366.4–581.5 mg·100 g-1 cat food) at 22°C storage temperature. Virus GC did not correlate with the dry matter, moisture content, pH and WAI after the 30 min contact time (except WSI). In conclusion, myo–inositol as a feed additive might have the potential to control serious viral infections such as COVID–19 for human–animal interactions in a One–Health context.

Publisher

Universidad del Zulia

Subject

General Veterinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3