Affiliation:
1. Institute of Turbomachinery and Fluid Dynamics
Leibniz Universität Hannover
Appelstrasse 9
30167 Hanover
Germany
2. MTU Aero Engines AG
Dachauer Strasse 665
80995 Munich
Germany
Abstract
The aim of this work is the decomposition, quantification, and analysis of losses related to the axial-gap size effect. Both experimental data and unsteady RANS calculations are investigated for axial gaps equal to 20%, 50% and 80% of the stator axial chord. A framework for identifying sources of loss typical in turbomachinery is derived and utilized for the low-pressure turbine presented. The analysis focuses on the dependency of these losses on the axial-gap variation. It is found that two-dimensional profile losses increase for smaller gaps due to higher wake-mixing losses and unsteady wake-blade interaction. Losses in the end-wall regions, however, decrease for smaller gaps. The total system efficiency can be described by a superposition of individual loss contributions, the optimum of which is found for the smallest gap investigated.
It is concluded that these loss contributions are characteristic for the medium aspect-ratio airfoils and operating conditions investigated. This establishes a deeper physical understanding for future investigations into the axial-gap size effect and its interdependency with other design parameters.
Publisher
Global Power and Propulsion Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献