Method of spatiotemporally monitoring acoustic cavitation based on radio frequency signal entropy analysis

Author:

Song Ren-Jie,Yuan Zi-Yan,Zhang Qi,Yu Jie,Xue Hong-Hui,Tu Juan,Zhang Dong, , , ,

Abstract

The violent inertial cavitation effect generated during high intensity focused ultrasound (HIFU) treatment may damage healthy tissues around the target area. Therefore, it is urgent to develop new technical approaches that can quantitatively monitor the acoustic cavitation motions in biological tissues with high precision in space and time, so as to ensure clinical safety and effectiveness. Compared with the traditional commercial ultrasonic gray value signal, the ultrasonic radio frequency (RF) signal can well retain more detailed information about the acoustic scattering signal. As a statistical parameter not based on mathematical function model, the information entropy can characterize the spatiotemporal evolution state of disorder of scatters inside tissues resulting from acoustic cavitation. Therefore, this paper proposes a real-time monitoring system for spatiotemporal evolution of acoustic cavitation based on the entropy analysis of ultrasonic RF signals. First, the original RF signal of scattered echoes generated by HIFU-induced cavitation bubbles inside the gel phantom is obtained by using a modified B-ultrasound system, and the two-dimensional mean filtering method is used to suppress the HIFU-induced strong interferences overlapping with cavitation monitoring imaging signals. Then, the dynamic variation range of the RF signal is expanded through data standardization processing, and the entropy image is reconstructed based on the sliding window information entropy analysis to demonstrate the spatiotemporal evolution status of the HIFU-induced cavitation behanviors. The experimental results indicate that the acoustic cavitation imaging algorithm based on RF signal entropy analysis should be more sensitive and accurate than the B-model gray scale imaging method for determining the onset time and spatial position of cavitation activities, which is helpful in ensuring the safety and efficacy of HIFU clinical treatment. Thepresent work will provide a useful tool for the spatiotemporal monitoring of the acoustic cavitation generated in tissues during HIFU treatment, and lays a solid theoretical and experimental foundation to establish an effective quantity-effect evaluation system for the cavitation related biological effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3