Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability

Author:

Sun Wei,Lü Chong,Lei Zhu,Zhong Jia-Yong, , ,

Abstract

Rayleigh-Taylor instability (RTI) is a fundamental physical phenomenon in fluids and plasmas, and plays a significant role in astrophysics, space physics, and engineering. Especially in inertial confinement fusion (ICF) research, numerous experimental and simulation results have identified RTI as one of the most significant barriers to achieving fusion. Understanding the origin and development of RTI will be conducive to formulating mitigation measures to curb the growth of instability, thereby improving the odds of ICF success. Although there have existed many theoretical and experimental studies of RTI under high energy density, there are few experiments to systematically explore the influence of magnetic fields on the evolution of magnetized RTI. Here, a new experimental scheme is proposed based on the Shenguang-II laser facility on which the nanosecond laser beams are used to drive modulation targets of polystyrene (CH) and low-density foam layers. A shock wave is generated after the laser’s CH modulation layer has been ablated, and propagates through CH to low-density foam. Moreover, Richtmyer-Meshkov instability is triggered off when the shock wave accelerates the target. When the laser pulse ends, the shock wave evolves into a blast wave, causing the system to decelerate, resulting in RTI in the reference system of the interface. In this paper the open-source radiation MHD simulation code (FLASH) is used to simulate the RTI generated by a laser-driven modulation target. The evolution of RTI under no magnetic field, under Biermann self-generated magnetic field, and under different applied magnetic fields are systematically investigated and compared with each other. The simulation results show that the Biermann self-generated magnetic field and the applied magnetic field parallel to flow direction do not change the interface dynamics in the evolution process of RTI. Nevertheless, the applied magnetic field perpendicular to flow direction can stabilize RTI and the Kelvin-Helmholtz vortex at the tail of the RTI spike. Magnetic pressure plays a decisive role. The present results provide a reference for the follow-up study of target physics related to ICF and deepen the understanding of the fluid mixing process.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference38 articles.

1. Rayleigh L 1882 Proc. R. Math. Soc. s1–14 170

2. Taylor G I 1950 Proc. R. Soc. London, Ser. A 201 192

3. Zhou Y, Williams R, Ramaprabhu P, Groom M, Attal N 2021 Physica D 423 132838

4. Liu X Y, Li W M, Liu YJ, Dai L M, Dong H, Li J, Zhao Y L 2019 Acta Petrologica Sin. 35 1071
刘昕悦, 李伟民, 刘永江, 戴黎明, 董昊, 李婧, 赵英利 2019 岩石学报 35 1071

5. Uchiyama Y, Aharonian F, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3