Direct synthesis of [Ca24Al28O64]4+(4e) electride and its thermionic emission performance

Author:

Li Fan,Zhang Xin,Zhang Jiu-Xing, ,

Abstract

[Ca<sub>24</sub>Al<sub>28</sub>O<sub>64</sub>]<sup>4+</sup>(4e<sup>–</sup>) eletride, as the first room-temperature stable inorganic electride, has attracted intensive attention because of its fascinating chemical, electrical, optical, and magnetic properties. However, it usually needs synthesizing through a complicated multistep process involving high temperature (e.g., 1350 °C), severe reduction (e.g., 700–1300 ℃ for up to 240 h in Ca or Ti metal vapor atmosphere) and post-purification. Owing to the H<sub>2</sub>O sensitivity of mayenite, the post-purification is quite troublesome once impurities are introduced. High-density, loosely bound encaged electrons with a low work function make it promise to possess practical applications. Therefore the facile method of massively producing the high-quality C12A7:e<sup>–</sup> with high Ne is extremely desired. In this work, C12A7:e<sup>–</sup> bulks are for the first time synthesized by simple spark plasma sintering process directly from a mixture of C12A7, CA and Ca powders under milder conditions (e.g., sintered at 1070 ℃ for 10 min in a vacuum). The obtained electride, which exhibits a relative density of 99%, an electron concentration of ~2.3×10<sup>21</sup> cm<sup>–3</sup> and an obvious absorption peak at 2.5 eV, is obtained via SPS process at 1100 ℃ for 10 min. Electronic structure is also investigated by electron paramagnetic resonance. The occurrence of Dysonian characteristic, a typical feature of good electronic conductors, strongly suggests that the electrons are trapped in mayenite cavities. Furthermore, the obtained C12A7:e<sup>–</sup> exhibits good sinterabilty on a crystal scale of 5–40 μm. Thermionic emission test results show that the thermionic emission begins to occur at 700 K and a large current density of 1.75 A/cm<sup>2</sup> is obtained in the electron thermal emission from a flat surface of the polycrystalline C12A7:e<sup>–</sup> with an effective work function of 2.09 eV for a temperature of 1373 K with an applied electric field of ~35000 V/cm in a vacuum. Owing to no external reductant is needed, this developed route exhibits notable superiority over the conventional reduction method for phase-pure C12A7:e<sup>–</sup>. Therefore, these results not only suggest a novel precursor for fabricating mayenite electride but also make it possible to produce efficiently the electride in large volume.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3