Author:
Zhou Zhen-Xiang ,Jia Xiao-Peng ,Li Yong ,Yan Bing-Min ,Wang Fang-Biao ,Fang Chao ,Chen Ning ,Li Ya-Dong ,Ma Hong-An , ,
Abstract
The large single crystal diamonds are successfully synthesized in a NiMnCo-C system with the zinc additive in a series of the experiments at temperatures of 1270-1400 ℃ and pressures of 6.2-6.4 GPa by the temperature gradient growth. Morphology and structural properties of the synthesized diamond are characterized by optical microscope and scanning electron microscopy. The Raman spectrum is used to investigate the crystallization of synthesized diamond. The results show that the colors of synthetic diamond crystals change from yellow to light yellow and nearly disappears with the increase of the zinc additive. There are a large number of irregular pits in the surface of diamond crystal when the zinc additive is increased up to 3.0 wt.%. the Fourier transform infrared spectroscopy spectra reveal that the nitrogen impurity in the synthetic diamond crystal is predominantly in the form of C center (single substitutional nitrogen atoms), and the nitrogen concentration decreases with the increase of zinc additive. Two possibilities that the zinc powders can be used as the nitrogen getter are given. the Raman spectrum shows that the diamond crystallization can be improved when the zinc additive is less than 3.0 wt.%. We believe that our work is greatly helpful for deeply understanding the natural diamond genesis, enriching the types of diamonds, and expanding the application areas of synthetic diamond.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献