A coupledj-mode method for sound propagation in range-dependent waveguides

Author:

Liu Juan,Li Qi, , ,

Abstract

The sound propagation problems in range-dependent waveguides are a common topic in underwater acoustics. The range-dependent factors, involving volumetric and bathymetric variations, significantly influence the propagation of sound energy and information. In this paper, a coupled-mode method based on the multimodal admittance method is presented for analyzing the sound propagation and scattering problems in range-dependent waveguides. The sound field is expanded in terms of a local basis with range-dependent modal amplitudes. The local basis corresponds to the transverse modes in a waveguide with constant physical parameters and constant cross section equal to the local cross section in the range-dependent waveguide. This local basis takes the advantage that it is easier to compute than the usual local modes which are the transverse modes in a waveguide with local physical parameters and constant cross-section equal to the local cross-section, especially for waveguides with complex environments. Projection of the Helmholtz equation that governs the sound pressure onto the local basis gives the second-order coupled mode equations for the modal amplitudes of the sound pressure. The correct boundary conditions are used in the derivation, giving rising to boundary matrices, in order to guarantee the conservation of energy among modes. The second-order coupled mode equations include coupled matrices and boundary matrices, which directly describe the effect of mode coupling due to contribution from volumetric variation (range-dependent physical parameters) and bathymetric variation (range-dependent boundaries). By introducing the admittance matrix, the second-order coupled mode equations are reduced to two sets of first-order evolution equations. The Magnus integration method is used to solve the first-order evolution equations. These first-order evolution equations allow us to obtain the numerical stable solutions and avoid the numerical divergence due to the exponential growth of evanescent modes. The numerical examples are presented for the waveguides with range-dependent physical parameters or range-dependent boundaries. The agreement between the results computed with the coupled mode method and COMSOL verifies the accuracy of the coupled mode method. Although the analysis and numerical implementation in this paper are based on two-dimensional waveguides in Cartesian coordinate system, it can be generally extended to study more complex waveguides.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3