Author:
Hao Juan ,Zhou Guang-Gang ,Ma Yue ,Huang Wen-Qi ,Zhang Peng ,Lu Gui-Wu , ,
Abstract
The high-temperature piezoelectric crystal Ga3PO7is a versatile functional material widely used in many electromechanical devices. As the Curie temperature of this crystal is as high as 1346 ℃, it can break through the current temperature limitations(1200 ℃) and then be used in extremely high-temperature condition. However, it is very difficult to explore its properties in such a high-temperature environment. Moreover, the relevant theoretical research has not been reported to date. Aiming at this problem, the density function theory combined with quasi harmonic approximation theory is used to investigate the structural, thermal and surface acoustic wave (SAW) properties of Ga3PO7. Firstly, the Gibbs energies of Ga3PO7 crystal with different stains are calculated, and the equilibrium structures of Ga3PO7 crystal at different temperatures (from 0 ℃ to 1200 ℃) are found according to minimal energy principle. Secondly, based on the result above, we optimize Ga3PO7 crystal at different temperatures, and then, the thermal and elastic properties of Ga3PO7 crystal within 0-1200 ℃ are calculated using CASTEP package based on the density functional theory in the generalized gradient approximation. The results show that its lattice constants increase almost linearly as temperature increases while its density decreases. Owing to anisotropy, its lattice constant along the c axis increases much more greatly than along the a axis. The coefficients of thermal expansion along the a and c axis are evaluated to be 1.6710-6 K-1 and 3.5810-6 K-1, respectively, and the volumetric heat capacity is evaluated to be 2.067 J/gK. These values all agree well with the experimental values. Finally, the elastic constants, bulk modulus and SAW properties of Ga3PO7 crystal at different temperatures (from 0 ℃ to 1200 ℃) are calculated. The results show that the bulk modulus can reach 175 GPa, and it changes very little as temperature increases. The fluctuation of elastic constants has slight influences on SAW velocity and the electric-mechanical coupling factor. When the propagation angle is 151, it possesses the stablest SAW properties and the largest electric-mechanical coupling factor which can reach 0.7%. The comprehensive analyses of the thermal, mechanical and SAW properties show that Y-cut Ga3PO7 possesses a greater potential application in high temperature environment.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference43 articles.
1. Rong L M, Yang M H, Cai G R, Ji H, Li W, Yang Y 2006 Integr. Ferroelectr. 80 289
2. Zhang Q, Qu M, Sheng J G 2005 Piezoelectr. Acoustoopt. 27 21 (in Chinese) [张强, 瞿敏, 沈建国 2005 压电与声光 27 21]
3. Lu Q, Luo L H, Huang Z Z, Cheng L, Song F S 2008 China Ceramics. 44 49 (in Chinese) [卢泉, 罗凌虹, 黄祖志, 程亮, 宋福生 2008 中国陶瓷 44 49]
4. Hang W, Zhou L B, Shimizu J, Yamamoto T, Yuan J L 2012 Eng. Mater. 523 7
5. Hall D A 2001 J. Mater. Sci. 36 4575
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献