Full-atomistic Molecular Dynamics Analysis of p53 Active Tetramer

Author:

Zhou Han ,Geng Yi-Zhao ,Yan Shi-Wei , , ,

Abstract

p53 is a tumor suppressor protein that plays a crucial role in inhibiting cancer development and maintaining the genetic integrity. Within the cell nucleus, four p53 molecules form a stable tetrameric active structure through highly cooperative interactions, bind to DNA via its DNA-binding domain, and transcriptionally activate or inhibit their target genes. However, in most human tumor cells, there are numerous p53 mutations. The majority of these mutations are formed in the p53 DNA-binding domain, importantly, the p53 DNA-binding domain is critical for p53 to form the tetrameric active structures and to regulate the transcription of its downstream target genes.<br/>This study exploited the all-atom molecular dynamics simulations to investigate the mechanisms of interactions within the wild-type p53 tetramers. This study indicates that the symmetric dimers on either side of the DNA are stable ones, keep stable structures both before and after DNA bindings. The binding of two monomers on the same side of the DNA depends on proteinprotein interactions provided by two contact surfaces. DNA scaffold stabilizes the tetrameric active structure. Such interactions play a crucial role in helping the tetramer formation. This study clarifies the internal interactions and key residues within the p53 tetramer during dynamic processes, as well as the critical sites at various interaction interfaces. The findings of this study may provide a significant foundation for us to further understand the p53's anticancer mechanisms, to explore the effective cancer treatment strategies, and in near future, to develop the effective anti-cancer drugs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3