First-principles study of the structure, elasticity, and electronic properties of the ternary semiconductor Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub> under high pressure

Author:

CHEN Meijuan ,GUO Jiaxin ,WU Hao ,ZHENG Xiaoran ,MIN Nan ,TIAN Hui ,LI Quanjun ,DU Shiyu ,SHEN Longhai , , , , ,

Abstract

First-principles density functional theory was employed to systematically study the effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub>. The lattice constants of Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub> decrease with increasing pressure, exhibiting anisotropic compression with greater compressibility along the <i>c</i>-axis. In terms of mechanical properties, the bulk modulus increases with pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with increasing pressure, suggesting that high pressure could induce plastic deformation in Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub>. Calculations of elastic constants and phonon spectra confirm that Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub> retains mechanical and dynamical stability across the 0–30 GPa pressure range.<br>Electronic structure calculations reveal that Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub> possesses a direct band gap, with non-overlapping conduction and valence bands at the Fermi level and higher carrier mobility in the conduction band compared to the valence band. The band gap increases nearly linearly with pressure, from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, differential charge density analysis reveals that increasing pressure strengthens Al-N and In-N bonds in Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub> through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance.<br>In conclusion, this study not only enhances our understanding of the high-pressure properties of Al<sub>4</sub>In<sub>2</sub>N<sub>6</sub> but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential for efficient high-pressure optoelectronic devices and materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference58 articles.

1. Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354

2. Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 Acs Nano 5 3970

3. Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407

4. Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502

5. Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102 (in Chinese) [仇鹏,刘恒,朱晓丽,田丰,杜梦超,邱洪宇,陈冠良,胡玉玉,孔德林,杨晋,卫会云,彭铭曾,郑新和 2024 物理学报 73 038102]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3