Rainbow scar states in the fracton model

Author:

XIE Yanjun,DAI Hanning, , ,

Abstract

The eigenstate thermalization hypothesis describes the nonequilibrium dynamics of an isolated quantum many-body system, during which a pure state becomes locally indistinguishable from a thermal ensemble. The discovery of quantum many-body scars (QMBS) shows a weak violation of ergodicity, characterized by coherent oscillations of local observables after a quantum quench. These states consist of the tower of regular eigenstates which are equally spaced in the energy spectrum. Although subextensive entanglement scaling is a primary feature widely used to detect QMBS numerically as entropy outliers, rainbow scars exhibit volume-law scaling, which may challenge this property. In this work, we construct the rainbow scar state in the fracton model on a two-leg ladder. The fracton model is composed of four-body ring-exchange interactions, exhibiting global time-reversal symmetry <inline-formula><tex-math id="M2">\begin{document}$ \hat{{{\cal{T}}}}={{\cal{K}}} {\mathrm{i}} \hat{\sigma}^y $\end{document}</tex-math></inline-formula> and subsystem <inline-formula><tex-math id="M3">\begin{document}$ {\hat{U}(1)}=\displaystyle \prod\nolimits_{j \in \{\text {row/col}\}} {\mathrm{exp}}\Big({{\mathrm{i}} \dfrac{\theta}{2} \hat{\sigma}_j^z}\Big)$\end{document}</tex-math></inline-formula> symmetry. The subsystem symmetry constrains particle mobility, hindering the establishment of thermal equilibrium and leading to a series of anomalous dynamical processes. We construct the rainbow scar state with distributed four-body GHZ states whose entanglement entropy follows the volume law. By calculating the eigenstates of the fracton model with exact diagonalization, the rainbow scar state consists of a series of degenerate high-energy excited states that are not significant outliers among other eigenstates in the spectrum. By introducing the on-site interaction to break the time-reversal symmetry, the degeneracy of rainbow scar states is lifted into an equally spaced tower of states, ensuring the revival of the initial state. However, when subsystem <inline-formula><tex-math id="Z-20250513211643">\begin{document}$\hat U(1) $\end{document}</tex-math></inline-formula> symmetry is broken, the scar state is quickly thermalized, indicating that the weak thermalization may be protected by subsystem <inline-formula><tex-math id="Z-20250513211649">\begin{document}$\hat U(1) $\end{document}</tex-math></inline-formula> symmetry. Additionally, we propose a scheme for preparing the rainbow scar state by modulating the strength of the four-body interaction and <inline-formula><tex-math id="M4">\begin{document}$ \hat{\sigma}^z$\end{document}</tex-math></inline-formula> operations, analyzing the influence of noise on the strength of the four-body interaction. This work provides new insights into the weak thermalization processes in fracton model and aids in understanding the nature of ETH-violation in various nonequilibrium systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3