Time-Frequency Complexity Maps for EEG-Based Diagnosis of Alzheimer’s Disease Using a Lightweight Deep Neural Network

Author:

Polat Hasan

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder with an unknown etiology and a significant prevalence. Rapid and accurate detection of AD is crucial to assist in a more effective and tailored treatment plan to delay the progression of the disease. This paper introduces a novel approach based on a time-frequency complexity map (complextrogram) for the automated AD diagnosis. The complextrogram is the topographic complexity level of an EEG signal, plotted as a function of time and frequency. The complextrogram representations were fed into a well-known lightweight deep neural network called MobileNet for robust performance on resource and accuracy tradeoffs. The experiments were performed using a five-fold cross-validation technique on a publicly available database containing clinical EEG recordings from 24 patients with AD and 24 healthy, age-matched controls. The proposed pipeline provided competitive performance with just 2.2 M parameters and achieved the best overall accuracy for some locations in the frontal lobes (Fp2 and F8 channels). For both channels, the classification accuracy was 100%. Also, the violin plot was used to get further details of the distribution of complexity values for specific frequency rhythms. After statistical evaluation, it was observed that neurodegenerative conditions caused changes in chaotic behaviors, including increased delta complexity and decreased alpha complexity. Results demonstrated that the complextrogram representation proved its potency for the input quality required by the deep learning architectures. Furthermore, the complextrogram method is a promising pathway to discriminate and reflect the fundamental characteristics of AD abnormalities.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3