Optimal Squeeze Net with Deep Neural Network-Based Arial Image Classification Model in Unmanned Aerial Vehicles

Author:

M S Minu,R Aroul Canessane,S S Subashka Ramesh

Abstract

In present times, unmanned aerial vehicles (UAVs) are widely employed in several real time applications due to their autonomous, inexpensive, and compact nature. Aerial image classification in UAVs has gained significant interest in surveillance systems that assist object detection and tracking processes. The advent of deep learning (DL) models paves a way to design effective aerial image classification techniques in UAV networks. In this view, this paper presents a novel optimal Squeezenet with a deep neural network (OSQN-DNN) model for aerial image classification in UAV networks. The proposed OSQN-DNN model initially enables the UAVs to capture images using the inbuilt imaging sensors. Besides, the OSQN model is applied as a feature extractor to derive a useful set of feature vectors where the coyote optimization algorithm (COA) is employed to optimally choose the hyperparameters involved in the classical SqueezeNet model. Moreover, the DNN model is utilized as a classifier that aims to allocate proper class labels to the applied input aerial images. Furthermore, the usage of COA for hyperparameter tuning of the SqueezeNet model helps to considerably boost the overall classification performance. For examining the enhanced aerial image classification performance of the OSQN-DNN model, a series of experiments were performed on the benchmark UCM dataset. The experimental results pointed out that the OSQN-DNN model has resulted in a maximum accuracy of 98.97% and a minimum running time of 1.26mts.

Publisher

International Information and Engineering Technology Association

Subject

Electrical and Electronic Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3