Advancements in Extreme Pressure Rotary Sealing

Author:

Dietle Lannie1,Richie Aaron1

Affiliation:

1. Kalsi Engineering, Inc.

Abstract

Polymeric rotary seals used in various oilfield equipment face challenging demands, including rotation for extended periods of time while sealing high differential pressure (?P). Such seals are typically mounted in a housing and compressed radially against a rotatable shaft, and prevent fluid from escaping through the clearance between the shaft and housing. One of the damage mechanisms that limits seal life is extrusion. High ?P forces seal material to extrude into the shaft-to-housing clearance. Factors such as shaft defection and runout overstress the extruded material, causing pieces to break away. Another damage mechanism is the accelerated adhesive wear that occurs when the PV (pressure times velocity) capacity of the seal material is exceeded for conventional rotary seals, or as hydrodynamic rotary seals transition toward boundary lubrication. In static sealing, extrusion is minimized by reducing shaft-to-housing clearance. In rotary sealing, the clearance has to be large enough to accommodate shaft deflection, runout, etc. Failure to provide adequate clearance results in heavily loaded metal-to-metal contact that damages the shaft, the seal, and the housing. This paper describes an innovative sealing arrangement that dramatically increases the PV capability of rotary seals, and summarizes key results from an extensive laboratory test program. Test conditions that were varied include shaft diameter, velocity, ?P, temperature, seal material, and lubricant. In the most extreme tests, each seal was exposed to a ?P of 7,500 psi and a velocity of 240 ft/minute for 1,000 hours, and survived in excellent condition. Potential applications for the new technology include rotating control devices (RCDs), washpipe assemblies, cementing heads, and hydraulic swivels. The new high ?P sealing arrangement is based on three technical advances: The seal is lined with a plastic having excellent high pressure extrusion resistance. The seal incorporates an advanced hydrodynamic inlet geometry that is sufficiently aggressive to produce hydrodynamic interfacial lubrication when plastic seal materials are used. Hydrodynamic lubrication with plastic seals significantly increases the PV capability of the seals beyond what is achievable with elastomer seals. An axially force balanced, radially pressure balanced backup ring having a very small clearance with the shaft is interposed between the rotary seal and the shaft-to-seal housing clearance.   The extrusion resistance of the hydrodynamic plastic seal, combined with the axially and radially balanced backup ring, allows this rotary sealing arrangement to reliably operate at ~5 times the PV value of conventional high pressure polymeric seals for durations in excess of 1,000 hours.

Publisher

OTC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3