Mooring Integrity Management through Digital Twin and Standardized Inspection Data

Author:

Matsumoto Shunsaku1,Jaiswal Vivek2,Sugimura Tadashi1,Honjo Shintaro3,Szalewski Piotr2

Affiliation:

1. Mitsubishi Heavy Industries, Ltd.

2. DNV

3. Mitsubishi Heavy Industries America, Inc.

Abstract

Abstract This paper presents a concept of a mooring digital twin frameworkand a standardized inspection datatemplate to enable digital twin. The mooring digital twin framework supports real-time and/or on-demand decision making in mooring integrity management, which minimizes the failure risk while reducing operation and maintenance cost by efficient inspection, monitoring, repair, and strengthening. An industry survey conducted through the DeepStar project 18403 identified a standard template for recording inspection data as a high priority item to enable application of the digital twins for integrity management. Further, mooring chain was selected as a critical mooring component for which a standard inspection template was needed. The characteristics of damage/performance prediction with the proposed mooring digital twin framework are (i) to utilize surrogates and/or reduced-order models trained by high-fidelity physics simulation models, (ii) to combine all available lifecycle data about the mooring system, (iii) to evaluate current and future asset conditions in a systematic way based on the concept of uncertainty quantification (UQ). The general and mooring-specific digital twin development workflows are described with the identified essential data, physics models, and several UQ methodologies such as surrogate modeling, local and global sensitivity analyses, Bayesian prediction etc. Also, the proposed digital twin system architecture is summarized to illustrate the dataflow in digital twin development andutilization. The prototype of mooring digital twin dashboard, web-based risk visualization and advisory system, is developed to demonstrate the capability to visualize the system health diagnosis and prognosis and suggest possible measures/solutions for the high-risk components as a digital twin's insight.

Publisher

OTC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3