Numerical Methods for Solving the Hartree-Fock Equations of Diatomic Molecules II

Author:

Morrison John C.,Steffen Kyle,Pantoja Blake,Nagaiya Asha,Kobus Jacek,Ericsson Thomas

Abstract

AbstractIn order to solve the partial differential equations that arise in the Hartree- Fock theory for diatomicmolecules and inmolecular theories that include electron correlation, one needs efficient methods for solving partial differential equations. In this article, we present numerical results for a two-variablemodel problem of the kind that arises when one solves the Hartree-Fock equations for a diatomic molecule. We compare results obtained using the spline collocation and domain decomposition methods with third-order Hermite splines to results obtained using the more-established finite difference approximation and the successive over-relaxation method. The theory of domain decomposition presented earlier is extended to treat regions that are divided into an arbitrary number of subregions by families of lines parallel to the two coordinate axes. While the domain decomposition method and the finite difference approach both yield results at the micro-Hartree level, the finite difference approach with a 9- point difference formula produces the same level of accuracy with fewer points. The domain decompositionmethod has the strength that it can be applied to problemswith a large number of grid points. The time required to solve a partial differential equation for a fine grid with a large number of points goes down as the number of partitions increases. The reason for this is that the length of time necessary for solving a set of linear equations in each subregion is very much dependent upon the number of equations. Even though a finer partition of the region has more subregions, the time for solving the set of linear equations in each subregion is very much smaller. This feature of the theory may well prove to be a decisive factor for solving the two-electron pair equation, which – for a diatomic molecule – involves solving partial differential equations with five independent variables. The domain decomposition theory also makes it possible to study complex molecules by dividing them into smaller fragments that are calculated independently. Since the domain decomposition approachmakes it possible to decompose the variable space into separate regions in which the equations are solved independently, this approach is well-suited to parallel computing.

Publisher

Global Science Press

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on non‐relativistic, fully numerical electronic structure calculations on atoms and diatomic molecules;International Journal of Quantum Chemistry;2019-05-21

2. Numerical Hartree–Fock and Many-Body Calculations for Diatomic Molecules;Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems;2018

3. Present Status of Selected Configuration Interaction With Truncation Energy Error;Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3