Development and Comparative Studies of Three Non-free Parameter Lattice Boltzmann Models for Simulation of Compressible Flows

Author:

Yang L. M.,Shu C.,Wu J.

Abstract

AbstractThis paper at first shows the details of finite volume-based lattice Boltzmann method (FV-LBM) for simulation of compressible flows with shock waves. In the FV-LBM, the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model, while the tangential flux is calculated using the same way as used in the conventional Euler solvers. The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM. The platform is formed from the conservation forms of moments. Under the platform, both the equilibrium distribution functions and lattice velocities can be determined, and therefore, non-free parameter model can be developed. The paper particularly presents three typical non-free parameter models, D1Q3, D1Q4 and D1Q5. The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems. Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number. From the results, it seems that D1Q4 model could be the best choice for the FV-LBM simulation of hypersonic flows.

Publisher

Global Science Press

Subject

Applied Mathematics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3