Blind Localization of Heating in Neural Tissues Induced by a Train of the Infrared Pulse Laser

Author:

Ansari Mohammad Ali1,Zakeri Mahdi1

Affiliation:

1. Optical Bio-Imaging Lab(OBI lab), Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

Abstract

Introduction: Recently, infrared lasers (wavelengths larger than 1100 nm) have been applied to stimulate neural tissues. Infrared neural stimulation (INS) has some advantages over conventional electric stimulation, including contact-free delivery, spatial precision, and lack of stimulation artifacts. In this study and based on a photothermal mechanism, we applied the heat diffusion equation to study temperature variation of a biological phantom during INS. In addition, the impact of laser parameters on spatially localized heating induced by 2 different infrared wavelengths were studied. Methods: We studied the localization of INS inside a phantom similar to cortical neural tissue. First, we analytically solved the heat diffusion equation to study the distribution of temperature inside this phantom. Then, the accuracy of analytical results was verified by heating the phantom using amplitude-modulated infrared lasers (lambda= 1450 and 1500 nm, the energy between 2 and 5 mJ and pulse duration up to 20 ms). The laser light was directed to sample by a multimode optical fiber (NA=0.22, core size= 200 microns). Finally, the impacts of laser properties on the spatial resolution of infrared heating were discerned. Results: In order to verify analytical results, we measured the maximum temperatures of the phantom during illumination of lasers and compared them with analytical results. The analytical results were in agreement with the experimental results. The effects of laser beam properties such as pulse duration, energy and repetition rate frequency on the spatial resolution were investigated. The results indicated that the spatial resolution of INS can be smaller than one millimeter. Conclusion: Here, the influences of laser properties on the localization of INS inside a biological phantom were studied. These results can be applied to improve the spatial selectivity of the peripheral nerve interface.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3