From Pixels to Predictions : Leveraging CNNs for Timely Ischemic Stroke Detection
-
Published:2024-09-05
Issue:5
Volume:11
Page:01-04
-
ISSN:2394-4099
-
Container-title:International Journal of Scientific Research in Science, Engineering and Technology
-
language:
-
Short-container-title:Int J Sci Res Sci Eng Technol
Author:
Arnav Yadav ,Hem Mehta ,Mahen Shah
Abstract
Early detection of ischemic stroke is crucial for optimal patient outcomes. This research presents a Convolutional Neural Network (CNN) model developed using Python libraries such as NumPy, Pandas, Matplotlib, Seaborn, Keras, and TensorFlow for the accurate identification of isYPchemic stroke. The model was trained and evaluated on a publicly available dataset of medical images. Through meticulous data preprocessing, augmentation, and model optimization, the CNN achieved a remarkable success rate of over 90% in distinguishing ischemic stroke cases from healthy controls. This study demonstrates the potential of deep learning in developing a robust and efficient clinical decision support tool for the timely diagnosis of ischemic stroke.
Publisher
Technoscience Academy
Reference14 articles.
1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., & Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In the 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) (pp. 265-283). 2. Fiebach, J. B., Schellinger, P. D., Jansen, O., Meyer, M., Wilde, P., Bender, J., & Sartor, K. (2010). CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke, 33(9), 2206-2210. 3. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95. 4. Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., & Rueckert, D. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 36, 61-78. 5. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).
|
|