The Reliability of MinimaxX Accelerometers for Measuring Physical Activity in Australian Football

Author:

Boyd Luke J.,Ball Kevin,Aughey Robert J.

Abstract

Purpose:To assess the reliability of triaxial accelerometers as a measure of physical activity in team sports.Methods:Eight accelerometers (MinimaxX 2.0, Catapult, Australia) were attached to a hydraulic universal testing machine (Instron 8501) and oscillated over two protocols (0.5 g and 3.0 g) to assess within- and between-device reliability. A static assessment was also conducted. Secondly, 10 players were instrumented with two accelerometers during Australian football matches. The vector magnitude was calculated, expressed as Player load and assessed for reliability using typical error (TE) ± 90% confidence intervals (CI), and expressed as a coefficient of variation (CV%). The smallest worthwhile difference (SWD) in Player load was calculated to determine if the device was capable of detecting differences in physical activity.Results:Laboratory: Within- (Dynamic: CV 0.91 to 1.05%; Static: CV 1.01%) and between-device (Dynamic: CV 1.02 to 1.04%; Static: CV 1.10%) reliability was acceptable across each test. Field: The between-device reliability of accelerometers during Australian football matches was also acceptable (CV 1.9%). The SWD was 5.88%.Conclusions:The reliability of the MinimaxX accelerometer is acceptable both within and between devices under controlled laboratory conditions, and between devices during field testing. MinimaxX accelerometers can be confidently utilized as a reliable tool to measure physical activity in team sports across multiple players and repeated bouts of activity. The noise (CV%) of Player load was lower than the signal (SWD), suggesting that accelerometers can detect changes or differences in physical activity during Australian football.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 418 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3