Effect of Forefoot and Midfoot Bending Stiffness on Agility Performance and Foot Biomechanics in Soccer

Author:

Brinkmann Daniel J.1,Koerger Harald2,Gollhofer Albert1,Gehring Dominic1

Affiliation:

1. 1University of Freiburg

2. 2adidas AG

Abstract

Footwear bending stiffness is known to positively affect performance in agility maneuvers due to improved energy storage and propulsion based on a stiffer foot–shoe complex. However, the functional properties of the forefoot and midfoot differ. Therefore, the present study investigates the effect of the interface of longitudinal bending stiffness and the ratio of forefoot to midfoot bending stiffness on agility performance and foot biomechanics. A total of 18 male soccer players performed 2 agility tasks in footwear conditions that were systematically modified in forefoot and midfoot bending stiffness. Results revealed that higher longitudinal bending stiffness caused more foot exorotation at the initial ground contact (P < .05), less torsion (P < .001), and an anterior shift in the point of force application during push off (P = .01). In addition, the authors observed decreased forefoot bending (P < .05) and increased torsion (P < .01) in footwear with a higher forefoot–midfoot ratio. Finally, the agility performance was significantly impaired by 1.3% in the condition with the highest forefoot–midfoot ratio (P < .01). The high forefoot–midfoot ratio, that is, a stiff forefoot in combination with a soft midfoot, seemed to shift the flex line from anterior to posterior that may explain the performance impairment.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3