Does Elastic Energy Enhance Work and Efficiency in the Stretch-Shortening Cycle?

Author:

Schenau Gerrit Jan van Ingen,Bobbert Maarten F.,de Haan Arnold

Abstract

This target article addresses the role of storage and reutilization of elastic energy in stretch-shortening cycles. It is argued that for discrete movements such as the vertical jump, elastic energy does not explain the work enhancement due to the prestretch. This enhancement seems to occur because the prestretch allows muscles to develop a high level of active state and force before starting to shorten. For cyclic movements in which stretch-shortening cycles occur repetitively, some authors have claimed that elastic energy enhances mechanical efficiency. In the current article it is demonstrated that this claim is often based on disputable concepts such as the efficiency of positive work or absolute work, and it is argued that elastic energy cannot affect mechanical efficiency simply because this energy is not related to the conversion of metabolic energy into mechanical energy. A comparison of work and efficiency measures obtained at different levels of organization reveals that there is in fact no decisive evidence to either support or reject the claim that the stretch-shortening cycle enhances muscle efficiency. These explorations lead to the conclusion that the body of knowledge about the mechanics and energetics of the stretch-shortening cycle is in fact quite lean. A major challenge is to bridge the gap between knowledge obtained at different levels of organization, with the ultimate purpose of understanding how the intrinsic properties of muscles manifest themselves underin-vivo-like conditions and how they are exploited in whole-body activities such as running. To achieve this purpose, a close cooperation is required between muscle physiologists and human movement scientists performing inverse and forward dynamic simulation studies of whole-body exercises.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3