Cadence Paradox in Cycling—Part 2: Theory and Simulation of Maximal Lactate Steady State and Carbohydrate Utilization Dependent on Cycling Cadence

Author:

Beneke Ralph1,Leithäuser Renate M.1

Affiliation:

1. Medizin Training und Gesundheit, Philipps Universität Marburg, Marburg, Germany

Abstract

Purpose: To develop and evaluate a theory on the frequent observation that cyclists prefer cadences (RPMs) higher than those considered most economical at submaximal exercise intensities via modeling and simulation of its mathematical description. Methods: The theory combines the parabolic power-to-velocity (v) relationship, where v is defined by crank length, RPM-dependent ankle velocity, and gear ratio, RPM effects on the maximal lactate steady state (MLSS), and lactate-dependent carbohydrate oxidation (CHO). It was tested against recent experimental results of 12 healthy male recreational cyclists determining the v-dependent peak oxygen uptake (VO2PEAKv), MLSS (MLSSv), corresponding power output (PMLSSv), oxygen uptake at PMLSSv (VO2MLSSv), and CHOMLSSv-management at 100 versus 50 per minute, respectively. Maximum RPM (RPMMAX) attained at minimized pedal torque was measured. RPM-specific maximum sprint power output (PMAXv) was estimated at RPMs of 100 and 50, respectively. Results: Modeling identified that MLSSv and PMLSSv related to PMAXv (IPMLSSv) promote CHO and that VO2MLSSv related to VO2PEAKv inhibits CHO. It shows that cycling at higher RPM reduces IPMLSSv. It suggests that high cycling RPMs minimize differences in the reliance on CHO at MLSSv between athletes with high versus low RPMMAX. Conclusions: The present theory-guided modeling approach is exclusively based on data routinely measured in high-performance testing. It implies a higher performance reserve above IPMLSSv at higher RPM. Cyclists may prefer high cycling RPMs because they appear to minimize differences in the reliance on CHO at MLSSv between athletes with high versus low RPMMAX.

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3