PRINCIPLES FOR MODELLING TECHNOLOGICAL PROCESSES INVESTIGATION INTO THE STRENGTH AND DURABILITY OF AUTOMATIC COUPLER SA‐3 IN RAILWAY CARRIAGES

Author:

Daunys Mykolas1,Putnaitė Donata2,Bazaras Žilvinas3

Affiliation:

1. Kaunas University of Technology, Dept of Machine Design, Kęstučio g. 27, 44025 Kaunas, Lithuania

2. Kaunas University of Technology, Dept of Ergonomics, Studentų g. 48, 51367 Kaunas, Lithuania

3. Kaunas University of Technology, Dept of Transport Engineering, Kęstučio g. 27, 44025 Kaunas, Lithuania

Abstract

The paper presents the durability analysis of the automatic coupler in railway carriages. The loading of the automatic coupler predetermined by the weight of a train, train speed and railway relief is a time‐dependent variable. The finite element method was used for stress‐strain state calculation taking into account acting forces. In order to reduce stress concentration, the geometry of the automatic coupler's body was modified. Modelling results for different rounded radii demonstrated it was possible to reduce stress concentration up to 34%. Under maximum forces, plastic strain occurs in the automatic coupler's body. The calculation of strain and stress state in the body of the automatic coupler shows it is under a static, low and high cycle loading. Therefore, to calculate the durability of the automatic coupler, the dependencies for low cycle nonstationary stress limited loading has been proposed evaluating low cycle quasistatic and fatigue damages. In order to evaluate high cycle fatigue damage, a linear law for the summation of loading cycles has been suggested. For low cycle damage evaluation, the calculation method for the summation of fatigue and quasi‐static damages created at one loading cycle taking into account loading level and neglecting the sequence of cycles has been put forward. Thus, to calculate the automatic coupler for each specific case, it is necessary to determine the number of loading cycles at each loading level and to evaluate durability considering dependencies presented in this paper.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3