EFFECTS OF ORGANIC LOADING RATE AND HYDRAULIC RETENTION TIME ON TREATMENT OF PHENOLIC WASTEWATER IN AN ANAEROBIC IMMOBILIZED FLUIDIZED BED REACTOR

Author:

Pishgar Roya1,Najafpour Ghasem D.1,Neya Bahram Navayi1,Bakhshi Zeinab1,Mousavi Nafise1

Affiliation:

1. Babol Noshirvani University of Technology

Abstract

Treatability of phenolic wastewater in an anaerobic immobilized fluidized bed reactor (AIFBR) in consequence of stepwise increment in phenolic load as well as decrease in hydraulic retention time (HRT) was investigated. The experimental data indicated that high degradation efficiencies of phenol and COD in the bioreactor at low HRTs and high organic loading rates were obtained. At constant HRT of 16 h with increase in influent phenol concentration from 98 to 630 mg/l, the average phenol and COD removals were 96 and 88%, respectively. However, further increase in phenol concentration in the feed stream to 995 mg/l resulted in decrease in phenol and COD removal efficiencies to 84 and 79%, respectively. For influent phenol concentration of 995 mg/l, the biogas production rate of 4.55 l/l.d was obtained. As HRT decreased from 3 to 0.15 day, the system showed high stability; influent phenol and COD were removed and reached to average values of 17 and 173 mg/l correspond to the removal efficiencies of about 97 and 90.5%, respectively. The bioreactor experienced a failure with further decrease in HRT to 0.1 day. Biogas production was gradually decreased from 7.04 l/l.d at HRT of 3 days to 2.23 l/l.d at HRT of 0.1 days. The value of the ratio of volatile fatty acids to total alkalinity (VFAs/TA) ranged from 0.03 to 0.24 during the entire course of operation.

Publisher

Vilnius Gediminas Technical University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3