Enhancing phosphorus use efficiency in wheat grown on alkaline calcareous soils
-
Published:2023-11-30
Issue:1
Volume:13
Page:79-88
-
ISSN:2147-4249
-
Container-title:EURASIAN JOURNAL OF SOIL SCIENCE (EJSS)
-
language:en
-
Short-container-title:EJSS
Author:
ABBAS Muhammad1ORCID, IRFAN Muhammad1ORCID, SHAH Javaid Ahmed1ORCID, SİAL Niaz Ali1ORCID, DEPAR Nizamuddin1ORCID
Affiliation:
1. Soil & Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tandojam-70060, Pakistan
Abstract
Phosphorus (P) use efficiency is crucial for sustainable wheat production, particularly on alkaline calcareous soils. This study investigates the relative importance of two factors; P acquisition efficiency (PAE) and P utilization efficiency (PUtE), in determining P use efficiency (PUE) in wheat. A field trial with ten wheat genotypes was conducted under two P levels (no P application and P application at 110 kg P2O5 ha−1). Results revealed significant genetic variability in PUE, PAE, and PUtE among wheat genotypes under varying P availabilities. Genotypes MK-4 and MK-8 exhibited superior PUE, making them ideal candidates for soils with differing P levels. PAE played a more substantial role in influencing PUE, with PUtE contributing less to the variability. The findings underscore the importance of improving PAE, particularly for wheat genotypes grown in P-deficient conditions. Moreover, selecting genotypes with lower grain P concentration can enhance PUtE, contributing to improved PUE. These insights can improve breeding efforts and crop management practices to enhance P use efficiency in wheat, ultimately reducing production costs and fertilizer demand, especially in P-limited alkaline calcareous soils.
Publisher
Eurasian Journal of Soil Sciences
Subject
Plant Science,Soil Science,Environmental Science (miscellaneous),Agronomy and Crop Science
Reference46 articles.
1. Abbas, M., Irfan, M., Shah, J.A., 2018a. Differential performance of wheat genotypes for grain yield, phosphorus uptake and utilization at low and high phosphorus: Evaluation of PUE in wheat genotypes. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences 55(2): 55-64. 2. Abbas, M., Shah, J.A., Irfan, M., Memon, M.Y., 2018b. Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency. Journal of Plant Nutrition 41(12): 1522-1533.
Amtmann, A., Armengaud, P., 2009. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Current Opinion in Plant Biology 12(3): 275-283. 3. Baker, A., Ceasar, S.A., Palmer, A.J., Paterson, J.B., Qi, W., Muench, S.P., Baldwin, S.A., 2015. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. Journal of Experimental Botany 66(12): 3523-3540. 4. Bayuelo-Jiménez, J.S., Ochoa-Cadavid, I., 2014. Phosphorus acquisition and internal utilization efficiency among maize landraces from the central Mexican highlands. Field Crops Research 156: 123-134. 5. Beebe, S.E., Rojas‐Pierce, M., Yan, X., Blair, M.W., Pedraza, F., Munoz, F., Tohme, J., Lynch, J.P., 2006. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Science 46(1): 413-423.
|
|