Author:
Ivanova-Rohling Violeta N.,Rohling Niklas,Burkard Guido
Abstract
AbstractQuantum state tomography (QST) represents an essential tool for the characterization, verification, and validation (QCVV) of quantum processors. Only for a few idealized scenarios, there are analytic results for the optimal measurement set for QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of measurement operators for QST has eigenbases which are mutually unbiased. However, in other set-ups, dependent on the rank of the projection operators and the size of the quantum system, the optimal choice of measurements for efficient QST needs to be numerically approximated. We have generalized this problem by introducing the framework of customized efficient QST. Here we extend customized QST and look for the optimal measurement set for QST in the case where some of the quantum gates applied in the measurement process are noisy. To achieve this, we use two distinct noise models: first, the depolarizing channel, and second, over- and under-rotation in single-qubit and to two-qubit gates (for further information, please see Methods). We demonstrate the benefit of using entangling gates for the efficient QST measurement schemes for two qubits at realistic noise levels, by comparing the fidelity of reconstruction of our optimized QST measurement set to the state-of-the-art scheme using only product bases.
Funder
Zukunftskolleg, University of Konstanz
Bulgarian National Science Fund
Universität Konstanz
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering
Reference46 articles.
1. Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Sci Stat Comput. 1997;26:1484.
2. Georgescu IM, Ashhab S, Nori F. Quantum simulation. Rev Mod Phys. 2014;86:153.
3. Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion quantum computing: progress and challenges. Appl Phys Rev. 2019;6:021314.
4. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA et al.. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505.
5. Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, Oliver WD. Superconducting qubits: current state of play. Annu Rev Condens Matter Phys. 2020;11:369.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献