Linear and nonlinear mechanical responses of cell monolayers under crowding

Author:

Guan Qing-Ling,Dong Li-Quan,Hao Qun

Abstract

AbstractEpithelial monolayers play an important role in a broad range of physiological and pathological processes, such as embryonic development and wound healing. Epithelial monolayers become crowded during cell proliferation and growth, however, their mechanical properties entities remain obscure. This paper presents a novel and efficient method utilizing the structural stiffness matrix-based computational method (SMM) to investigate the mechanical characteristics of an epithelial monolayer as it undergoes varying degrees of crowding. Both D1-type extrusion, representing the extrusion of live cells, and D2-type extrusion, describing the extrusion of apoptotic cells, are examined. Our simulations reveal that the epithelial monolayer exhibits linear elastic behavior under slight crowding and nonlinear elastic behavior in response to overcrowding. These mechanical properties are significantly influenced by the strength of cellular cytoskeleton and the mode of cell extrusion. Moreover, our analysis indicates that the linear deformation of these monolayers is predominantly born by the variation in cell orientation, while the nonlinear deformation originates from the existence of the microtubules. This study further deepens our understanding of the relationship between the mechanical properties of cytoskeleton, individual cells and their monolayers, and may shed light on linking cell behavior to the patterning and morphogenesis of tissues.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular and cellular mechanics;The European Physical Journal Special Topics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3