Author:
Adhikari P.,Ajaj R.,Alpízar-Venegas M.,Amaudruz P.-A.,Auty D. J.,Batygov M.,Beltran B.,Benmansour H.,Bina C. E.,Bonatt J.,Bonivento W.,Boulay M. G.,Broerman B.,Bueno J. F.,Burghardt P. M.,Butcher A.,Cadeddu M.,Cai B.,Cárdenas-Montes M.,Cavuoti S.,Chen M.,Chen Y.,Cleveland B. T.,Corning J. M.,Cranshaw D.,Daugherty S.,DelGobbo P.,Dering K.,DiGioseffo J.,Di Stefano P.,Doria L.,Duncan F. A.,Dunford M.,Ellingwood E.,Erlandson A.,Farahani S. S.,Fatemighomi N.,Fiorillo G.,Florian S.,Flower T.,Ford R. J.,Gagnon R.,Gallacher D.,García Abia P.,Garg S.,Giampa P.,Goeldi D.,Golovko V.,Gorel P.,Graham K.,Grant D. R.,Grobov A.,Hallin A. L.,Hamstra M.,Harvey P. J.,Hearns C.,Hugues T.,Ilyasov A.,Joy A.,Jigmeddorj B.,Jillings C. J.,Kamaev O.,Kaur G.,Kemp A.,Kochanek I.,Kuźniak M.,Lai M.,Langrock S.,Lehnert B.,Leonhardt A.,Levashko N.,Li X.,Lidgard J.,Lindner T.,Lissia M.,Lock J.,Longo G.,Machulin I.,McDonald A. B.,McElroy T.,McGinn T.,McLaughlin J. B.,Mehdiyev R.,Mielnichuk C.,Monroe J.,Nadeau P.,Nantais C.,Ng C.,Noble A. J.,O’Dwyer E.,Oliviéro G.,Ouellet C.,Pal S.,Pasuthip P.,Peeters S. J. M.,Perry M.,Pesudo V.,Picciau E.,Piro M.-C.,Pollmann T. R.,Rand E. T.,Rethmeier C.,Retière F.,Rodríguez-García I.,Roszkowski L.,Ruhland J. B.,Sánchez-García E.,Santorelli R.,Sinclair D.,Skensved P.,Smith B.,Smith N. J. T.,Sonley T.,Soukup J.,Stainforth R.,Stone C.,Strickland V.,Stringer M.,Sur B.,Tang J.,Vázquez-Jáuregui E.,Viel S.,Walding J.,Waqar M.,Ward M.,Westerdale S.,Willis J.,Zuñiga-Reyes A.,
Abstract
AbstractThe DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $$^{39}\text{ Ar }$$
39
Ar
beta decays and is suppressed using pulse-shape discrimination (PSD). We use two types of PSD estimator: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the mean single-photoelectron charge, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulse shape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.
Funder
Canadian Foundation for Innovation
Natural Sciences and Engineering Research Council of Canada
Fundacja na rzecz Nauki Polskiej
Horizon 2020 Framework Programme
International Research Agenda Programme AstroCeNT
UK Science and Technology Facilities Council
CONACyT, Mexico
Canada First Research Excellence Fund
Ministerio de Ciencia e Innovación
ERC StG
Ministry of Research and Innovation
Leverhulme Trust
Ministry of Advanced Education, Government of Alberta
DGAPA-UNAM
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference33 articles.
1. G. Fiorillo, The liquid argon technology for neutrino and astroparticle detectors, in Dipartimento di Scienze Fisiche Università di Napoli “Federico II” and INFN Sezione di. ed. by In. Nuc, B. Phys, Proc. Sup., (Napoli, Italy, 2006), p. 372–376
2. C. Gary, S. Kane, M.I. Firestone et al., Large area liquid argon detectors for interrogation systems (2013), p. 698–703
3. M. Agostini, M. Barnabé-Heider, D. Budjáš et al., LArGe: active background suppression using argon scintillation for the GERDA $$0\nu \beta \beta $$-experiment. EPJ C 75(10), 506 (2015). arXiv:1501.05762
4. P. DarkSide Collaboration, D Alton Agnes, K. Arisaka et al., DarkSide-50: A WIMP Search with a Two-phase Argon TPC. Physics Procedia 61, 124–129 (2015)
5. DarkSide-20k Collaboration, C.E. Aalseth, F Acerbi, P Agnes, et al., DarkSide-20k: a 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS. Eur. Phys. J. Plus 133, 131 (2017). arXiv:1707.08145