Pulse-shape discrimination against low-energy Ar-39 beta decays in liquid argon with 4.5 tonne-years of DEAP-3600 data

Author:

Adhikari P.,Ajaj R.,Alpízar-Venegas M.,Amaudruz P.-A.,Auty D. J.,Batygov M.,Beltran B.,Benmansour H.,Bina C. E.,Bonatt J.,Bonivento W.,Boulay M. G.,Broerman B.,Bueno J. F.,Burghardt P. M.,Butcher A.,Cadeddu M.,Cai B.,Cárdenas-Montes M.,Cavuoti S.,Chen M.,Chen Y.,Cleveland B. T.,Corning J. M.,Cranshaw D.,Daugherty S.,DelGobbo P.,Dering K.,DiGioseffo J.,Di Stefano P.,Doria L.,Duncan F. A.,Dunford M.,Ellingwood E.,Erlandson A.,Farahani S. S.,Fatemighomi N.,Fiorillo G.,Florian S.,Flower T.,Ford R. J.,Gagnon R.,Gallacher D.,García Abia P.,Garg S.,Giampa P.,Goeldi D.,Golovko V.,Gorel P.,Graham K.,Grant D. R.,Grobov A.,Hallin A. L.,Hamstra M.,Harvey P. J.,Hearns C.,Hugues T.,Ilyasov A.,Joy A.,Jigmeddorj B.,Jillings C. J.,Kamaev O.,Kaur G.,Kemp A.,Kochanek I.,Kuźniak M.,Lai M.,Langrock S.,Lehnert B.,Leonhardt A.,Levashko N.,Li X.,Lidgard J.,Lindner T.,Lissia M.,Lock J.,Longo G.,Machulin I.,McDonald A. B.,McElroy T.,McGinn T.,McLaughlin J. B.,Mehdiyev R.,Mielnichuk C.,Monroe J.,Nadeau P.,Nantais C.,Ng C.,Noble A. J.,O’Dwyer E.,Oliviéro G.,Ouellet C.,Pal S.,Pasuthip P.,Peeters S. J. M.,Perry M.,Pesudo V.,Picciau E.,Piro M.-C.,Pollmann T. R.,Rand E. T.,Rethmeier C.,Retière F.,Rodríguez-García I.,Roszkowski L.,Ruhland J. B.,Sánchez-García E.,Santorelli R.,Sinclair D.,Skensved P.,Smith B.,Smith N. J. T.,Sonley T.,Soukup J.,Stainforth R.,Stone C.,Strickland V.,Stringer M.,Sur B.,Tang J.,Vázquez-Jáuregui E.,Viel S.,Walding J.,Waqar M.,Ward M.,Westerdale S.,Willis J.,Zuñiga-Reyes A.,

Abstract

AbstractThe DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $$^{39}\text{ Ar }$$ 39 Ar beta decays and is suppressed using pulse-shape discrimination (PSD). We use two types of PSD estimator: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the mean single-photoelectron charge, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulse shape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.

Funder

Canadian Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Fundacja na rzecz Nauki Polskiej

Horizon 2020 Framework Programme

International Research Agenda Programme AstroCeNT

UK Science and Technology Facilities Council

CONACyT, Mexico

Canada First Research Excellence Fund

Ministerio de Ciencia e Innovación

ERC StG

Ministry of Research and Innovation

Leverhulme Trust

Ministry of Advanced Education, Government of Alberta

DGAPA-UNAM

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference33 articles.

1. G. Fiorillo, The liquid argon technology for neutrino and astroparticle detectors, in Dipartimento di Scienze Fisiche Università di Napoli “Federico II” and INFN Sezione di. ed. by In. Nuc, B. Phys, Proc. Sup., (Napoli, Italy, 2006), p. 372–376

2. C. Gary, S. Kane, M.I. Firestone et al., Large area liquid argon detectors for interrogation systems (2013), p. 698–703

3. M. Agostini, M. Barnabé-Heider, D. Budjáš et al., LArGe: active background suppression using argon scintillation for the GERDA $$0\nu \beta \beta $$-experiment. EPJ C 75(10), 506 (2015). arXiv:1501.05762

4. P. DarkSide Collaboration, D Alton Agnes, K. Arisaka et al., DarkSide-50: A WIMP Search with a Two-phase Argon TPC. Physics Procedia 61, 124–129 (2015)

5. DarkSide-20k Collaboration, C.E. Aalseth, F Acerbi, P Agnes, et al., DarkSide-20k: a 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS. Eur. Phys. J. Plus 133, 131 (2017). arXiv:1707.08145

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3