Abstract
AbstractJet quenching, the modification of the properties of a QCD jet when the parton cascade takes place inside a medium, is an intrinsically quantum process, where color coherence effects play an essential role. Despite a very significant progress in the last years, the simulation of a full quantum medium induced cascade remains inaccessible to classical Monte Carlo parton showers. In this situation, alternative formulations are worth being tried and the fast developments in quantum computing provide a very promising direction. The goal of this paper is to introduce a strategy to quantum simulate single particle momentum broadening, the simplest building block of jet quenching. Momentum broadening is the modification of the quark or gluon transverse momentum due interactions with the underlying medium, modeled as a QCD background field. At the lowest order in $$\alpha _s$$
α
s
that we consider here, momentum broadening does not involve parton splittings and particle number is conserved, greatly simplifying the quantum algorithmic implementation. This quantity is, however, very relevant for the phenomenology of RHIC, LHC or the future EIC.
Funder
Horizon 2020 Framework Programme
H2020 European Research Council
European Regional Development Fund
Xunta de Galicia
“la Caixa” Foundation
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献