Author:
Huber Markus Q.,Fischer Christian S.,Sanchis-Alepuz Hèlios
Abstract
AbstractWe calculate the glueball spectrum for spin up to $$J=$$
J
=
4 and positive charge parity in pure Yang–Mills theory. We construct the full bases for $$J=$$
J
=
0, 1, 2, 3, 4 and discuss the relation to gauge invariant operators. Using a fully self-contained truncation of Dyson–Schwinger equations as input, we obtain ground states and first and second excited states from extrapolations of the eigenvalue curves. Where available, we find good quantitative agreement with lattice results
Funder
Deutsche Forschungsgemeinschaft
Silicon Austria Labs
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference67 articles.
1. UKQCD Collaboration, G. S. Bali, K. Schilling, A. Hulsebos, A. C. Irving, C. Michael, P. W. Stephenson, A Comprehensive lattice study of SU(3) glueballs, Phys. Lett. B309, 378–384 (1993). arXiv:hep-lat/9304012 [hep-lat]
2. C.J. Morningstar, M.J. Peardon, The Glueball spectrum from an anisotropic lattice study. Phys. Rev. D 60, 034509 (1999). arXiv:hep-lat/9901004 [hep-lat]
3. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D 73, 014516 (2006). arXiv:hep-lat/0510074 [hep-lat]
4. A. Athenodorou, M. Teper, The glueball spectrum of SU(3) gauge theory in 3+1 dimension. arXiv:2007.06422 [hep-lat]
5. M.Q. Huber, C.S. Fischer, H. Sanchis-Alepuz, Spectrum of scalar and pseudoscalar glueballs from functional methods. arXiv:2004.00415 [hep-ph]
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献