Higher-order asymptotic corrections and their application to the Gamma Variance Model

Author:

Canonero EnzoORCID,Brazzale Alessandra RosalbaORCID,Cowan GlenORCID

Abstract

AbstractWe present improved methods for calculating confidence intervals and p values in situations where standard asymptotic approaches fail due to small sample sizes. We apply these techniques to a specific class of statistical model that can incorporate uncertainties in parameters that themselves represent uncertainties (informally, “errors on errors”) called the Gamma Variance Model. This model contains fixed parameters, generically denoted by $$\varepsilon $$ ε , that represent the relative uncertainties in estimates of standard deviations of Gaussian distributed measurements. If the $$\varepsilon $$ ε parameters are small, one can construct confidence intervals and p values using standard asymptotic methods. This is formally similar to the familiar situation of a large data sample, in which estimators for all adjustable parameters have Gaussian distributions. Here we address the important case where the $$\varepsilon $$ ε parameters are not small and as a consequence the first-order asymptotic distributions do not represent a good approximation. We investigate improved test statistics based on the technology of higher-order asymptotics (modified likelihood root and Bartlett correction). The effective application of higher-order corrections removes an important computational barrier to the use of the Gamma Variance Model.

Funder

Science and Technology Facilities Council

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3