Abstract
AbstractThe existence of dark matter is explained by a new, massive, neutral, non-symmetric, rank-2 tensor gauge boson ($$\hbox {Z}_{{\upmu \upnu }}$$
Z
μ
ν
-boson). The $$\hbox {Z}_{{\upmu \upnu }}$$
Z
μ
ν
-boson can be predicted by the tensor gauge boson extension of the Electro Weak (EW) theory, proposed by Savvidy (Phys Lett B 625:341, 2005). The non-symmetric rank-2 tensor $$\hbox {Z}_{{\upmu \upnu }}$$
Z
μ
ν
can be decomposed into a symmetric ($$\hbox {Z}_{{(\upmu \upnu )}})$$
Z
(
μ
ν
)
)
and anti-symmetric ($$\hbox {Z}_{{[\upmu \upnu ]}})$$
Z
[
μ
ν
]
)
part. Based on the non-Lagrangian formulation for the free sector of the $$\hbox {R}_{\textrm{2}}$$
R
2
-theory proposed recently by Criado et al. (Phys Rev D 102:125031, arXiv:2010.02224, 2020), our massive anti-symmetric tensor field $$\hbox {Z}_{{[\upmu \upnu ]}}$$
Z
[
μ
ν
]
corresponds to the massive symmetric spinor field $$\hbox {Z}_{{\upalpha \upbeta \upgamma \updelta }}$$
Z
α
β
γ
δ
in the (2,0) irrep. For the massive $$\hbox {Z}_{{\upalpha \upbeta \upgamma \updelta }}$$
Z
α
β
γ
δ
with the $$\hbox {Z}_{\textrm{2}}$$
Z
2
-symmetric Higgs portal couplings to a Standard Model (SM) particle, we compute the self-annihilation cross-section of the $$\hbox {Z}_{{\upalpha \upbeta \upgamma \updelta }}$$
Z
α
β
γ
δ
dark matter and calculate its relic abundance. We also study the SM-SM particle scattering due to the exchange of the massive-$$\hbox {Z}_{{(\upmu \upnu )}}$$
Z
(
μ
ν
)
symmetric field at a high energy scale. This proposition may have far reaching applications in astrophysics and cosmology.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference110 articles.
1. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)
2. K. Benakli, J. Elis, D. Nanopoulos, Phys. Rev. D 59, 047301 (1999)
3. J.L. Lopez, D.V. Nanopoulos, arXiv:hep-th/9511266 (1995)
4. M.K. Gaillard, arXiv:hep-th/0412079 (2004)
5. B. Carlos, J.A. Casas, F. Quevedo, E. Roulet, Phys. Lett. B 318, 447 (1993)