Towards a 1010 n/s neutron source with kHz repetition rate, few-cycle laser pulses

Author:

Osvay K.ORCID,Stuhl L.,Varmazyar P.,Gilinger T.,Elekes Z.,Fenyvesi A.,Hideghethy K.,Szabo R. E.,Füle M.,Biró B.,Halász Z.,Korkulu Z.,Kuti I.,Molnár R.,Ébert A.,Polanek R.,Buzás E.,Nagy B.,Singh P. K.,Hussain S.,Börzsönyi A.,Fülöp Zs.,Tajima T.,Mourou G.,Szabó G.

Abstract

AbstractA project has been launched for the development of a laser-based neutron source with the few-cycle lasers available at ELI ALPS. Here we show the first experiments, when deuterons were accelerated from ultrathin deuterated foils at 1 Hz repetition rate with the use of 12 fs, 21 mJ laser pulses. The energy spectra of the accelerated deuterons were measured with Thomson ion spectrometers both in forward and backward directions. The accelerated deuterons induced 2H + 2H fusion reaction in a deuterated polyethylene disk. The resulting fast neutrons were measured with a time-of-flight (ToF) detector system, within which each detector consisted of a plastic scintillator and a photomultiplier, at four different angles relative to the normal of the neutron converter disk. We found good agreement with the simulated angular distribution and energy spectra. Here, we also present preparations for the next phases when the repetition rate is increased to 10 Hz. The developed flat liquid jet was demonstrated to accelerate protons over 0.6 MeV cutoff energy with a stability better than 4% for 15 min. We developed two further neutron measurement techniques: a liquid scintillator, the ToF signal of which was evaluated with the pulse shape discrimination method, and a bubble detector spectrometer calibrated against a conventional PuBe source. One of the first upcoming applications is the irradiation of zebrafish embryos with laser-generated ultrashort bunch neutrons. As this experiment needs to be implemented in vacuum, the steps of careful preparation and calibration measurements are also discussed.

Funder

NKFIH

European Regional Development Fund

Insitute for Basic Science

Institute for Basic Science

University of Szeged

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3