ABCNet: an attention-based method for particle tagging

Author:

Mikuni V.ORCID,Canelli F.

Abstract

AbstractIn high energy physics, graph-based implementations have the advantage of treating the input data sets in a similar way as they are collected by collider experiments. To expand on this concept, we propose a graph neural network enhanced by attention mechanisms called ABCNet. To exemplify the advantages and flexibility of treating collider data as a point cloud, two physically motivated problems are investigated: quark–gluon discrimination and pileup reduction. The former is an event-by-event classification, while the latter requires each reconstructed particle to receive a classification score. For both tasks, ABCNet shows an improved performance compared to other algorithms available.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference26 articles.

1. L. Evans, P. Bryant, LHC machine. JINST 3, S08001 (2008)

2. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3, S08003 (2008)

3. C.M.S. Collaboration, The CMS Experiment at the CERN LHC. JINST 3, S08004 (2008)

4. C. Chen, L.Z. Fragonara, A. Tsourdos. GAPNet: Graph attention based point neural network for exploiting local feature of point cloud. arXiv e-prints, arXiv:1905.08705 (2019)

5. H. Qu, L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds. arXiv e-prints, arXiv:1902.08570 (2019)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3