Ultrasound harmonic generation and atomic layer deposition of multilayer, deep-UV mirrors and filters with microcavity plasma arrays

Author:

Kim Jinhong,Mironov AndreyORCID,Park Sehyun,Kim Changgong,Park Sung-Jin,Eden J. Gary

Abstract

Abstract In honor of Professor Kurt Becker’s pioneering contributions to microplasma physics and applications, we report the capabilities of arrays of microcavity plasmas in two emerging and disparate applications. The first of these is the generation of ultrasound radiation in the 20–240 kHz spectral range with microplasmas in either a static or jet configuration. When a $$10\times 10$$ 10 × 10 array of microplasma jets is driven by a 20-kHz sinusoidal voltage, for example, harmonics as high as m = 12 are detected and fractional harmonics are produced by controlling the spatial symmetry of the emitter array. The preferential emission of ultrasound in an inverted cone having an angle of $$\pm \,45^\circ $$ ± 45 with respect to the surface normal of the jet array’s exit face is attributed to interference between spatially periodic, outward-propagating waves generated by the arrays. The spatial distribution of ultrasound generated by the arrays is analogous to the radiation patterns produced by Yagi-Uda phased array antennas at RF frequencies for which radiation is emitted broadside to arrays of parallel electric dipoles. Also, the nonperturbative envelope of the ultrasound harmonic spectrum resembles that for high-order harmonic generation at optical frequencies in rare gas plasmas and attests to the strong nonlinearity provided by the pulsed microplasmas in the sub-250-kHz region. Specifically, the relative intensities of the second and third harmonics exceed that for the fundamental, and a “plateau” region is observed extending from the 5th through the 8th harmonics. A strong plasma nonlinearity appears to be responsible for both the appearance of fractional harmonics and the nonperturbative nature of the acoustic harmonic spectrum. Multilayer metal-oxide optical filters designed to have peak transmission near 222 nm in the deep-UV region of the spectrum have been fabricated by microplasma-assisted atomic layer deposition. Alternating layers of ZrO$$_2$$ 2 and Al$$_2$$ 2 O$$_3$$ 3 , each having a thickness in the 20–50 nm range, were grown on quartz and silicon substrates by successively exposing the substrate to the Zr or Al precursor (tetrakis(dimethylamino) zirconium or trimethylaluminum, respectively) and the products of an oxygen microplasma while maintaining the substrate temperature at 300 K. Bandpass filters comprising 9 cycles of 30-nm-thick ZrO$$_2$$ 2 /50-nm-thick Al$$_2$$ 2 O$$_3$$ 3 film pairs transmit 80% at 235 nm but < 35% in the 250–280 nm interval. Such multilayer reflectors appear to be of significant value in several applications, including bandpass filters suppressing long wavelength (240–270 nm) radiation emitted by KrCl (222) lamps. Graphical abstract

Funder

Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3