Characterisation of a hollow-cathode lamp to measure accurate branching fractions of rare-earth elements.

Author:

Sen Sarma Pratyush RanjanORCID,Belmonte Maria TeresaORCID,Mar Santiago

Abstract

Abstract This work describes the tests performed with a newly built hollow-cathode lamp to ensure its capability to measure atomic parameters such as transition probabilities accurately. We discuss the design of the lamp and the experimental setup that will be used to measure transition probabilities. We show the discharge characteristics of the lamp and also the stability of spectral emission of the lamp over a period of two hours. Finally, it is concluded that the experimental setup, the lamp, and a camera with high resolving power are well suited for the measurement of the transition probabilities of doubly ionised rare-earths like Nd III. Graphical abstract Graphical abstract illustrating the use of a hollow-cathode lamp setup for accurately measuring branching fractions of rare-earth elements. The setup includes a diffraction grating spectrometer and a CMOS camera to detect radiation across a spectral range of 200 nm to 800 nm with a resolving power of 150,000 at 450 nm

Funder

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3