Evaluation of SNPs and miRNAs in the BID, MAPK10, and AGER Genes Related to Alzheimer's Disease by Using In Silico Tools

Author:

DEMİRCİ Nur1ORCID,ÖZKAN OKTAY Ebru1ORCID,KARAHAN Mesut1ORCID

Affiliation:

1. ÜSKÜDAR ÜNİVERSİTESİ

Abstract

Alzheimer's disease (AD) is a multifactorial disease resulting from both genetic and environmental factors, which are pathologically defined by the accumulation of intracellular hyperphosphorylated tau protein, neurofibrils tangles, and extracellular amyloid β protein in the brain. The purpose of this study is to estimate the potentially damaging effects of missense single nucleotide polymorphisms (SNPs) in the BID, MAPK10 and AGER genes associated with AD using various in silico tools and to determine the effects of SNPs on miRNAs. In addition, it is aimed to determine the gene-gene and protein-protein interactions through various software tools. Consequently, it was estimated that there may be harmful effects of seven polymorphisms in the BID gene, twenty-seven in the MAPK10 gene and three in the AGER gene. It was obtained that some SNPs decrease the effectiveness of miRNA-mRNA binding, enhance, break, create a new binding zone and/or destroy the miRNA-mRNA binding zone in the BID and MAPK10 genes. miRNA-SNP analyses could not provide information on the AGER gene. In this study, SNPs in the BID, MAPK10, and AGER genes, which are estimated to be high-risk SNPs, will be able to provide data for future genotyping studies. SNPs that are estimated to be high-risk and SNPs that may have a role in miRNA- mRNA activity can be assessed as a priority in experimental studies related to AD. In the future, experimental studies are proposed to investigate the clinical effects of harmful/disease-related missense SNPs and SNPs affecting mRNA-miRNA interaction.

Publisher

Bilecik Seyh Edebali Universitesi Fen Bilimleri Dergisi

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3