Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania

Author:

Shirima J.1ORCID,Wikedzi A.1ORCID,Rasskazova A. V.2ORCID

Affiliation:

1. University of Dar es Salaam

2. Mining Institute, Separate Division of Khabarovsk Federal research center of the Far Eastern branch, Russian Academy of Sciences

Abstract

The search for alternative sources of useful minerals is a pressing issue. One such possible source is the processing of lean gold-bearing ores, which previously did not seem feasible to exploit for subsoil users, leading to their disposal in off-balance ore dumps. Processing these resources becomes economically viable as gold prices rise and processing technologies improve over time. This paper presents the elemental and mineralogical composition of lean gold-bearing ore dumps from the Golden Pride Project (GPP) mining operation in Tanzania’s Lihendo district. This area contains an old dump of lean gold-bearing ores, weighing approximately 1.4 million tons. Extracting valuable components from lean mineral raw materials is a current priority. Sampling was conducted to study the dumps. Boreholes were drilled to a depth of 1 m, covering a total sampling area of 20 ha; 18 samples, each averaging 3 kg in weight, were collected. The results of X-ray fluorescence analysis (XRF) indicated the presence of Fe, S, Si, Ca, Ca, Mn, Cu, Al, Cr, Ti, As, and Ag in the collected samples. X-ray diffraction (XRD) analysis revealed that the main minerals in the dumps are muscovite, kaolinite, quartz, montimorillonite, and goethite. The average gold grade in the selected samples is 0.72 g/t. Studies of the grain-size distribution and gold distribution by grain-size classes after ore grinding demonstrated that the majority of gold (74%) is in the −75 μm class. In the initial mineral material of the dumps, the share of the +30-50 mm grain-size class is 81%. The paper proposes potential methods for processing lean dumps of gold-bearing ores. One such methods involves crushing the dump material, separating the −75 μm class, and subjecting it to direct leaching or leaching using “carbon-in-pulp” technique. Heap leaching appears to be the most promising method for extracting gold from such dumps in terms of technical and economic feasibility. Positive experience has been reported in applying this process to ores of similar mineralogical type.

Publisher

National University of Science and Technology MISiS

Reference19 articles.

1. Araya N., Kraslawski A., Cisternas L.A. Towards mine tailings valorization: Recovery of critical materials from Chilean mine tailings. Journal of Cleaner Production. 2020;263:121555. https://doi.org/10.1016/j.jclepro.2020.121555

2. Hlabangana N., Bhebhe S., Mguni N.G., et al. Optimisation of the leaching parameters of a gold ore in sodium cyanide solution. International Journal of Engineering Research and Reviews. 2018;6(1):1–10.

3. Tilton J.E. Is mineral depletion a threat to sustainable mining? SEG Newsletter. 2010. URL: http://inside.mines.edu/UserFiles/File/economicsBusiness/Tilton/Sustainable_Mining_Paper.pdf [Accessed: January 2023].

4. Nieto A., Muncher B. An applied economic assessment and value maximization of a mining operation based on an iterative cut-off grade optimization algorithm. International Journal of Mining and Mineral Engineering. 2021;12(4):309–326. https://doi.org/10.1504/IJMME.2021.121330

5. Aleksandrova T.N. Сomplex and deep processing of mineral raw materials of natural and technogenic origin: state and prospects. Journal of Mining Institute. 2022;256:503–504.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3