Investigation of the tribological characteristics of Ta–Zr–Si–B–C–N coatings

Author:

Sytchenko A. D.1ORCID,Vakhrushev R. A.1,Kiryukhantsev-Korneev Ph. V.1ORCID

Affiliation:

1. National University of Science and Technology “MISIS”

Abstract

Ta–Zr–Si–B–C–N coatings were deposited by magnetron sputtering using a TaSi2–Ta3B4–(Ta, Zr)B2 composite target. Ar, as well as Ar + N2 and Ar + C2H4 gas mixtures, were used as the working gas. The structure and composition of the coatings were studied by scanning electron microscopy, glow-discharge optical emission spectroscopy, and X-ray diffraction. A Calowear tester was used to measure the thickness and abrasion resistance of the coatings. Erosion resistance tests were carried out using a UZDN-2T (Russia) ultrasonic disperser. Tribological tests in the sliding friction mode were carried out on an HT Tribometer (CSM Instruments, Switzerland) automated friction machine. The wear zone after tribological testing was examined using a Veeco Wyko 1100 (Veeco, USA) optical profiler. The results showed that the Ta–Zr–Si–B coating was characterised by a columnar structure with an h-TaSi2 crystallite size of 11 nm. The introduction of nitrogen and carbon into the composition of the coatings led to the suppression of columnar growth and a ~2–4-fold decrease in the size of h-TaSi2 crystallites. Carboncontaining coatings demonstrated the best abrasive resistance. The sliding friction tests showed that the Ta–Zr–Si–B coating is characterised by a stable coefficient of friction of 0.3 at a temperature of 25 °C up to the maximum working temperature of 250 °C. The introduction of nitrogen led to an increase in the coefficient of friction up to 0.8–1.0 at a t = 50÷110 °С. The coating with the minimum carbon concentration showed a stable coefficient of friction of ~0.3 up to a maximum temperature of 250 °C. The best result was demonstrated by the sample containing the maximum amount of carbon, with its coefficient of friction remaining at the 0.25 level up to a temperature of 350 °C.

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3