Efficient Net-based Transfer Learning Technique for Facial Autism Detection

Author:

Saeed Mian Tariq

Abstract

Autism Spectrum Disorder is a neurological disorder in which an individual faces life-long effects in communication and interaction with others. Nowadays, the Autism Spectrum disorder ratio is increasing drastically more than ever before. Autism can be identified at all developmental levels as a ”behavioural condition,” and its symptoms often arise between the ages of two and four. The ASD issue starts during puberty and persists through adolescence and adulthood. Children with ASD use both nonverbal and verbal behaviour to communicate, and they struggle with joint attention and social reciprocity. Children with autism are frequently socially isolated as a result of these problems. Through very expensive and time-consuming screening exams, autism spectrum features can be identified. As one of the possible mirrors of the brain, children’s faces can be utilised as a biomarker and as a quick and convenient technique for the early identification of ASD. An effective, genuine, and automatic method of face-based spectrum disorder identification is required. In this study we compare the transfer learning approach used for autism identification with the convolutional neural network (CNN)-based efficient-net strategy to identify autistic children using facial images. We used an open-source Kaggle dataset and evaluated the model performance in terms of accuracy, confusion matrix, precision, recall, and F1 measure. Efficient shows an accuracy of 97% on the benchmark dataset and beats the baseline technique of transfer learning-based approaches. This study can be used to help medical professionals validate their initial screening procedures for finding youngsters with ASD disease.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attention-Focused Eye Gaze Analysis to Predict Autistic Traits Using Transfer Learning;International Journal of Computational Intelligence Systems;2024-05-16

2. Facial-Based Autism Spectrum Disorder Diagnosis Using Enhanced Deep Learning Models;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3