Triple gene editing in porcine embryos using electroporation alone or in combination with microinjection

Author:

Namula Zhao1ORCID,Le Quynh Anh2ORCID,Wittayarat Manita2ORCID,Lin Qingyi2ORCID,Takebayashi Koki2ORCID,Hirata Maki2ORCID,Do Lanh Thi Kim3ORCID,Tanihara Fuminori4ORCID,Otoi Takeshige1ORCID

Affiliation:

1. Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Guangdong, China.

2. Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan.

3. Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan; Department of Animal Theriogenology and Surgery, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam.

4. Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, 3290498 Tochigi, Japan.

Abstract

Background and Aim: We previously developed the gene-editing by electroporation (EP) of Cas9 protein method, in which the CRISPR/Cas9 system was introduced into porcine in vitro fertilized (IVF) zygotes through EP to disrupt a target gene. This method should be further developed, and a combination of EP and MI methods should be evaluated in pigs. This study aimed to determine that a combination of microinjection (MI) and EP of CRISPR/Cas9 system could increase the rates of biallelic mutation for triple-gene knockout in porcine blastocysts. We targeted the pancreatic and duodenal homeobox1 (PDX1) gene using cytoplasmic MI 1 h before or after EP, which was used to edit alpha-1,3-galactosyltransferase (GGTA1) and cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes in porcine zygotes. Materials and Methods: We introduced guide RNAs targeting PDX1, GGTA1, and CMAH with the Cas9 protein into IVF zygotes (one-cell stage) through EP 10 h after the start of IVF (IVF; EP group) or in combination with MI (1 h before, MI-EP group, or after EP treatment EP-MI group) and evaluated the blastocyst formation rate and efficiency of target mutations in the resulting blastocysts. Results: Our results revealed a significant reduction in the rate of blastocyst formation in the two groups that underwent MI before and after EP (MI-EP and EP-MI group), compared with that in the groups treated with EP alone (EP group) (p=0.0224 and p<0.0001, respectively) and control (p=0.0029 and p<0.0001, respectively). There was no significant difference in the total mutation rates among the treatment groups in the resulting blastocysts. As an only positive effect of additional MI treatment, the rate of blastocysts carrying biallelic mutations in at least one target gene was higher in the MI-EP group than in the EP group. However, there was no difference in the rates of embryos carrying biallelic mutations in more than 2 target genes. Conclusion: These results indicate that although a combination of MI and EP does not improve the mutation efficiency or biallelic mutation for triple-gene knockout, MI treatment before EP is better to reduce mortality in porcine zygotic gene editing through a combination of MI and EP.

Funder

University of Tokushima

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3