Photon-Counting Detector CT for Liver Lesion Detection—Optimal Virtual Monoenergetic Energy for Different Simulated Patient Sizes and Radiation Doses

Author:

Racine Damien,Mergen Victor,Viry Anaïs,Frauenfelder Thomas,Alkadhi Hatem,Vitzthum Veronika,Euler André

Abstract

Objectives The aim of this study was to evaluate the optimal energy level of virtual monoenergetic images (VMIs) from photon-counting detector computed tomography (CT) for the detection of liver lesions as a function of phantom size and radiation dose. Materials and Methods An anthropomorphic abdominal phantom with liver parenchyma and lesions was imaged on a dual-source photon-counting detector CT at 120 kVp. Five hypoattenuating lesions with a lesion-to-background contrast difference of −30 HU and −45 HU and 3 hyperattenuating lesions with +30 HU and +90 HU were used. The lesion diameter was 5–10 mm. Rings of fat-equivalent material were added to emulate medium- or large-sized patients. The medium size was imaged at a volume CT dose index of 5, 2.5, and 1.25 mGy and the large size at 5 and 2.5 mGy, respectively. Each setup was imaged 10 times. For each setup, VMIs from 40 to 80 keV at 5 keV increments were reconstructed with quantum iterative reconstruction at a strength level of 4 (QIR-4). Lesion detectability was measured as area under the receiver operating curve (AUC) using a channelized Hotelling model observer with 10 dense differences of Gaussian channels. Results Overall, highest detectability was found at 65 and 70 keV for both hypoattenuating and hyperattenuating lesions in the medium and large phantom independent of radiation dose (AUC range, 0.91–1.0 for the medium and 0.94–0.99 for the large phantom, respectively). The lowest detectability was found at 40 keV irrespective of the radiation dose and phantom size (AUC range, 0.78–0.99). A more pronounced reduction in detectability was apparent at 40–50 keV as compared with 65–75 keV when radiation dose was decreased. At equal radiation dose, detection as a function of VMI energy differed stronger for the large size as compared with the medium-sized phantom (12% vs 6%). Conclusions Detectability of hypoattenuating and hyperattenuating liver lesions differed between VMI energies for different phantom sizes and radiation doses. Virtual monoenergetic images at 65 and 70 keV yielded highest detectability independent of phantom size and radiation dose.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3