Xenon and Sevoflurane Protect against Brain Injury in a Neonatal Asphyxia Model

Author:

Luo Yan1,Ma Daqing2,Ieong Edmund3,Sanders Robert D.4,Yu Buwei5,Hossain Mahmuda6,Maze Mervyn7

Affiliation:

1. Research Fellow, Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London; Department of Anesthesiology, Rui Jin Hospital, Shanghai, Jia Tong University, Shanghai, China.

2. Senior Lecturer.

3. House Officer.

4. Academic Clinic Fellow.

5. Professor, Department of Anesthesiology, Rui Jin Hospital, Shanghai, China.

6. Research Technician.

7. Professor, Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London.

Abstract

Background Perinatal hypoxia-ischemia causes significant morbidity and mortality. Xenon and sevoflurane may be used as inhalational analgesics for labor. Therefore, the authors investigated the potential application of these agents independently and in combination to attenuate perinatal injury. Methods Oxygen-glucose deprivation injury was induced in pure neuronal or neuronal-glial cocultures 24 h after preconditioning with xenon and/or sevoflurane. Cell death was assessed by lactate dehydrogenase release or staining with annexin V-propidium iodide. The mediating role of phosphoinositide-3-kinase signaling in putative protection was assessed using wortmannin, its cognate antagonist. In separate in vivo experiments, perinatal asphyxia was induced 4 hours after preconditioning with analgesic doses alone and in combination; infarct size was assessed 7 days later, and neuromotor function was evaluated at 30 days in separate cohorts. The role of phosphorylated cyclic adenosine monophosphate response element binding protein in the preconditioning was assessed by immunoblotting. Results Both anesthetics preconditioned against oxygen-glucose deprivation in vitro alone and in combination. The combination increased cellular viability via phosphoinositide-3- kinase signaling. In in vivo studies, xenon (75%) and sevoflurane (1.5%) alone as well as in combination (20% xenon and 0.75% sevoflurane) reduced infarct size in a model of neonatal asphyxia. Preconditioning with xenon and the combination of xenon and sevoflurane resulted in long-term functional neuroprotection associated with enhanced phosphorylated cyclic adenosine monophosphate response element binding protein signaling. Conclusions Preconditioning with xenon and sevoflurane provided long-lasting neuroprotection in a perinatal hypoxic-ischemic model and may represent a viable method to preempt neuronal injury after an unpredictable asphyxial event in the perinatal period.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3