Carbon Monoxide Inhalation Reduces Pulmonary Inflammatory Response during Cardiopulmonary Bypass in Pigs

Author:

Goebel Ulrich1,Siepe Matthias1,Mecklenburg Anne2,Stein Phillip1,Roesslein Martin1,Schwer Christian I.1,Schmidt Rene1,Doenst Torsten3,Geiger Klaus K.4,Pahl Heike L.5,Schlensak Christian6,Loop Torsten7

Affiliation:

1. Resident.

2. cand. med..

3. Assistant Professor, Department of Cardiovascular Surgery, University of Leipzig, Leipzig, Germany.

4. Professor of Anesthesiology and Chairman.

5. Professor, Division of Experimental Anesthesiology, Department of Anesthesiology and Critical Care Medicine.

6. Assistant Professor, Department of Cardiovascular Surgery, University Medical Center Freiburg.

7. Assistant Professor, Department of Anesthesiology and Critical Care Medicine.

Abstract

Background Cardiopulmonary bypass (CPB) is associated with pulmonary inflammation and dysfunction. This may lead to acute lung injury and acute respiratory distress syndrome with increased morbidity and mortality. The authors hypothesized that inhaled carbon monoxide before initiation of CPB would reduce inflammatory response in the lungs. Methods In a porcine model, a beating-heart CPB was used. The animals were either randomized to a control group, to standard CPB, or to CPB plus carbon monoxide. In the latter group, lungs were ventilated with 250 ppm inhaled carbon monoxide in addition to standard ventilation before CPB. Lung tissue samples were obtained at various time points, and pulmonary cytokine levels were determined. Results Hemodynamic parameters were largely unaffected by CPB or carbon monoxide inhalation. There were no significant differences in cytokine expression in mononuclear cells between the groups throughout the experimental time course. Compared with standard CPB animals, carbon monoxide significantly suppresses tumor necrosis factor-alpha and interleukin-1beta levels (P < 0.05) and induced the antiinflammatory cytokine interleukin 10 (P < 0.001). Carbon monoxide inhalation modulates effector caspase activity in lung tissue during CPB. Conclusions The results demonstrate that inhaled carbon monoxide significantly reduces CPB-induced inflammation via suppression of tumor necrosis factor alpha, and interleukin-1beta expression and elevation of interleukin 10. Apoptosis induced by CPB was associated with caspase-3 activation and was significantly attenuated by carbon monoxide treatment. Based on the observations of this study, inhaled carbon monoxide could represent a potential new therapeutic modality for counteracting CPB-induced lung injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference53 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3