Pregabalin Suppresses Spinal Neuronal Hyperexcitability and Visceral Hypersensitivity in the Absence of Peripheral Pathophysiology

Author:

Bannister Kirsty1,Sikandar Shafaq1,Bauer Claudia S.1,Dolphin Annette C.2,Porreca Frank3,Dickenson Anthony H.2

Affiliation:

1. Research Associate.

2. Professor, Department of Neuroscience, Pharmacology and Physiology, University College London, London, United Kingdom.

3. Professor, Department of Pharmacology, College of Medicine, University of Arizona Health Sciences Center, Tucson, Arizona.

Abstract

Background Opioid-induced hyperalgesia is recognized in the laboratory and the clinic, generating central hyperexcitability in the absence of peripheral pathology. We investigated pregabalin, indicated for neuropathic pain, and ondansetron, a drug that disrupts descending serotonergic processing in the central nervous system, on spinal neuronal hyperexcitability and visceral hypersensitivity in a rat model of opioid-induced hyperalgesia. Methods Male Sprague-Dawley rats (180-200 g) were implanted with osmotic mini-pumps filled with morphine (90 μg · μl⁻¹ · h⁻¹) or saline (0.9% w/v). On days 7-10 in isoflurane anesthetized animals, we evaluated the effects of (1) systemic pregabalin on spinal neuronal and visceromotor responses, and (2) spinal ondansetron on dorsal horn neuronal response. Messenger ribonucleic acid concentrations of α2δ-1, 5HT3A, and μ-opioid receptor in the dorsal root ganglia of all animals were analyzed. Results In morphine-treated animals, evoked spinal neuronal responses were enhanced to a subset of thermal and mechanical stimuli. This activity was attenuated by pregabalin (by at least 71%) and ondansetron (37%); the visceromotor response to a subset of colorectal distension pressures was attenuated by pregabalin (52.8%; n = 8 for all measures, P < 0.05). Messenger ribonucleic acid concentrations were unchanged. Conclusions The inhibitory action of pregabalin in opioid-induced hyperalgesia animals is neither neuropathy-dependent nor reliant on up-regulation of the α₂δ-1 subunit of voltage-gated calcium channels-mechanisms proposed as being essential for pregabalin's efficacy in neuropathy. In opioid-induced hyperalgesia, which extends to colonic distension, a serotonergic facilitatory system may be up-regulated, creating an environment that is permissive for pregabalin-mediated analgesia without peripheral pathology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3