Toll-like Receptor 4 Signaling Confers Cardiac Protection against Ischemic Injury via  Inducible Nitric Oxide Synthase- and Soluble Guanylate Cyclase-dependent Mechanisms

Author:

Wang E1,Feng Yan2,Zhang Ming2,Zou Lin2,Li Yan2,Buys Emmanuel S.3,Huang Peigen4,Brouckaert Peter5,Chao Wei6

Affiliation:

1. Research Fellow, Anesthesia Center for Critical Care Research, Department of Anesthesia & Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Associate Professor, Department of Anesthesiology, Xiangya Hospital, Central South University, China.

2. Research Fellow.

3. Instructor.

4. Instructor, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School.

5. Professor, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.

6. Associate Professor, Anesthesia Center for Critical Care Research, Department of Anesthesia & Critical Care, Massachusetts General Hospital, Harvard Medical School.

Abstract

Background Prior administration of a small dose of lipopolysaccharide confers a cardiac protection against ischemia-reperfusion injury. However, the signaling mechanisms that control the protection are incompletely understood. We tested the hypothesis that Toll-like receptor 4 (TLR4) mediates the ability of lipopolysaccharide to protect against cardiac ischemia-reperfusion injury through distinct intracellular pathways involving myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor protein-inducing interferon-β-mediated transcription factor (Trif), inducible nitric oxide synthase (iNOS), and soluble guanylate cyclase (sGC). Methods Wild-type mice and genetically modified mice, that is TLR4-deficient (TLR4(-def)), TLR2 knockout (TLR2(-/-)), MyD88(-/-), Trif(-/-), iNOS(-/-), and sGCα1(-/-), were treated with normal saline or 0.1 mg/kg lipopolysaccharide intraperitoneally. Twenty-four hours later, isolated hearts were perfused in a Langendorff apparatus and subsequently subjected to 30 min global ischemia and reperfusion for as long as 60 min. Left ventricular function and myocardial infarction sizes were examined. Results Compared with saline-treated mice, lipopolysaccharide-treated mice had markedly improved left ventricular developed pressure and dP/dt(max) (P < 0.01) and reduced myocardial infarction sizes (37.2 ± 3.4% vs. 19.8 ± 4.9%, P < 0.01) after ischemia-reperfusion. The cardiac protective effect of lipopolysaccharide was abolished in the TLR4(-def) and MyD88(-/-) mice but remained intact in TLR2(-/-) or Trif(-/-) mice. iNOS(-/-) mice or wild-type mice treated with the iNOS inhibitor 1400W failed to respond to the TLR4-induced nitric oxide production and were not protected by the lipopolysaccharide preconditioning. Although sGCα(1)(-/-) mice had robust nitric oxide production in response to lipopolysaccharide, they were not protected by the TLR4-elicited cardiac protection. Conclusions TLR4 activation confers a potent cardiac protection against ischemia-reperfusion injury via a MyD88-dependent, but Trif-independent, mechanism. iNOS/sGC are essential for the TLR4-induced cardiac protection.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference51 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3