Effects of Permissive Hypercapnia on Transient Global Cerebral Ischemia–Reperfusion Injury in Rats

Author:

Zhou Qiang1,Cao Bo2,Niu Li2,Cui Xiaoguang3,Yu Hongwei4,Liu Jinfeng3,Li Haibo2,Li Wenzhi3

Affiliation:

1. Attending Doctor.

2. Associate Professor.

3. Professor, Department of Anesthesiology, The Second Clinical Hospital, Harbin Medical University.

4. Lecturer, Department of Histology and Embryology, Harbin Medical University.

Abstract

Background Permissive hypercapnia is a widely practiced protective ventilatory strategy that has significant protective effects on several models of in vitro and in vivo neuronal injury. However, conclusive effects of permissive hypercapnia on cerebral ischemia are still unknown. Methods One hundred sixty male Wistar rats were divided into five groups: S group (control), ischemia-reperfusion (I/R) group, P1 group, P2 group, and P3 group. I/R was induced by bilateral occlusion of the common carotid arteries, combined with controlled hypotension for 15 min. In groups P1, P2, and P3, the rats inhaled carbon dioxide for 2 h during reperfusion to keep Paco2 within the ranges of 60-80 mmHg, 80-100 mmHg, and 100-120 mmHg, respectively. After 24 and 72 h, neurologic deficit scores, ultrastructural changes, apoptotic neurons, and brain wet-to-dry weight ratios were observed. Caspase-3 and aquaporin-4 protein expression and caspase-3 activity were analyzed. Results Compared with groups I/R and P3, groups P1 and P2 had better neurologic deficit scores and fewer ultrastructural histopathologic changes. I/R-induced cerebral apoptosis was also significantly reduced. The neuroprotective effect was significantly increased in the P2 group compared with the P1 group. There was a significant increase of brain water content and of aquaporin-4 levels in the P3 group. Conclusions Mild to moderate hypercapnia (Paco2 60-100 mmHg) is neuroprotective after transient global cerebral I/R injury. Such a protection might be associated with apoptosis-regulating proteins. In contrast, severe hypercapnia (Paco2 100-120 mmHg) increased brain injury, which may be caused by increased brain edema.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference44 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3