Desflurane Selectively Suppresses Long-latency Cortical Neuronal Response to Flash in the Rat

Author:

Hudetz Anthony G.1,Vizuete Jeannette A.2,Imas Olga A.3

Affiliation:

1. Professor of Anesthesiology, Physiology, and Biophysics.

2. Graduate Student, Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, and Department of Anesthesiology, Medical College of Wisconsin.

3. Postdoctoral Fellow, Department of Anesthesiology, Medical College of Wisconsin.

Abstract

Background The effect of inhalational anesthetics on sensory-evoked unit activity in the cerebral cortex has been controversial. Desflurane has desirable properties for in vivo neurophysiologic studies, but its effect on cortical neuronal activity and neuronal responsiveness is not known. The authors studied the effect of desflurane on resting and visual evoked unit activity in rat visual cortex in vivo. Methods Desflurane was administered to adult albino rats at steady-state concentrations at 2%, 4%, 6%, and 8%. Flashes from a light emitting diode were delivered to the left eye at 5-s intervals. Extracellular unit activity within the right visual cortex was recorded using a 49-electrode array. Individual units were identified using principal components analysis. Results At 2% desflurane, 578 active units were found. Of these, 75% increased their firing rate in response to flash. Most responses contained early (0-100 ms) and late (150-1000 ms) components. With increasing desflurane concentration, the number of units active at baseline decreased (-13%), the number of early-responding units increased (+31%), and number of late-responding units decreased (-15%). Simultaneously, baseline firing rate decreased (-77%), the early response was unchanged, and the late response decreased (-60%). Conclusions The results indicate that visual cortex neurons remain responsive to flash stimulation under desflurane anesthesia, but the long-latency component of their response is attenuated in a concentration-dependent manner. Suppression of the long-latency response may be related to a loss of corticocortical feedback and loss of consciousness.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference64 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3